a2 United States Patent

Logue et al.

US009432464B2

US 9,432,464 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

TIME VARIANT DATA PROFILE FOR A
FABRIC NETWORK

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Jay D. Logue, San Jose, CA (US);
Grant M. Erickson, Sunnyvale, CA
(US); Sunny Vardhan Gujjaru,
Mountain View, CA (US); Michael
Dixon, Sunnyvale, CA (US); Jiakang
Lu, Mountain View, CA (US)

GOOGLE INC., Mountain View, CA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/665,913
Filed: Mar. 23, 2015
Prior Publication Data

US 2016/0103911 Al Apr. 14, 2016

Related U.S. Application Data

Provisional application No. 62/061,593, filed on Oct.
8, 2014.

Int. CL.

GO6F 15/16 (2006.01)

HO4L 29/08 (2006.01)

GO08B 29/02 (2006.01)

F24F 11/00 (2006.01)

GO05B 15/02 (2006.01)

GO6F 17/30 (2006.01)

(Continued)
U.S. CL
CPC ... HO4L 67/141 (2013.01); F24F 11/006

(2013.01); GO5B 15/02 (2013.01); GOGF
17/30722 (2013.01); GO8B 29/02 (2013.01);

HO4L 12/281 (2013.01); HO4L 29/06
(2013.01); HO4L 41/0816 (2013.01); HO4L
43/0805 (2013.01); HO4L 45/02 (2013.01);
HO4L 45/74 (2013.01); HO4L 63/08 (2013.01);
HO4L 67710 (2013.01); HO4L 67/12 (2013.01);
HO4L 677143 (2013.01); HO4L 67/303
(2013.01)
(58) Field of Classification Search

USPCccovueneee 709/203, 217-219, 223-229, 250

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,162,690 B2* 1/2007 Gupta et al. 715/202
2004/0022257 Al* 2/2004 Green et al. 370/401
(Continued)

OTHER PUBLICATIONS

Phillips et al., Internet Engineering Task Force. Tags for Identifying
Languages. BCP 47. Sep. 2009. http://tools.ietf.org/html/bep4d7.

(Continued)

Primary Examiner — Zarni Maung

(57) ABSTRACT

Systems and methods for exchanging a data stream of
information that varies over time using a message format.
The message format includes a version field that indicates a
version of a structure of the message format. The message
format also includes one or more resources fields that each
identifies a resource to be imported into the data stream
exchanging the data stream. Moreover, the message format
includes one or more records that represent time-variant data
samples being exchanged in the message. Furthermore, the
message format includes one or more descriptor fields,
wherein each descriptor field corresponds to at least one
respective record of the one or more records and contains
metadata describing data contained within the at least one
record.

20 Claims, 25 Drawing Sheets

DESCRIPTOR

1654

| IDENTIFIER

11668

! STREAM PERIODICITY

[1vee

11662

FIELDS

N
}~~155o
N

1664

1680

1680

1680

:LTlME PERIOD

.
1666
MN-1668

1670

1672

US 9,432,464 B2
Page 2

(51) Imt.CL
HO4L 29/06 (2006.01)
HO4L 12724 (2006.01)
HO4L 1228 (2006.01)
HO4L 1226 (2006.01)
HO4L 12/751 (2013.01)
HO4L 12/741 (2013.01)
GOGF 12/00 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0032847 Al* 2/2004 Cain ... 370/338
2004/0049590 Al 3/2004 Collier et al.
2005/0108332 Al* 5/2005 Vaschillo et al. 709/206

2005/0260989 Al
2006/0092890 Al
2006/0143560 Al*
2006/0173985 Al*
2007/0061018 Al
2007/0185814 Al*
2007/0218875 Al
2010/0067705 Al*
2012/0110077 Al1*
2012/0246345 Al
2013/0136117 Al
2013/0322281 Al

11/2005 Pourtier et al.
5/2006 Gupta et al.
6/2006 Gupta et al. ..o 715/512
8/2006 Moore 709/223
3/2007 Callaghan et al.
8/2007 Boccon-Gibod et al. 705/51
9/2007 Calhoun et al.
3/2010 Boccon-Gibod et al. 380/285
5/2012 Merchant et al. 709/204
9/2012 Contreras et al.
5/2013 Schrum et al.

12/2013 Ludlow et al.

2014/0169214 Al
2014/0280520 Al

6/2014 Nakajima
9/2014 Baier et al.

2014/0304760 Al* 10/2014 Kimetal. ... 725/131
2014/0359101 Al 12/2014 Dawes et al.
2014/0380388 Al* 12/2014 Leeetalccooovvnn. 725/110

2015/0006633 Al 1/2015 Vandwalle et al.
2015/0023336 Al 1/2015 Ilsar et al.

2015/0156546 Al* 6/2015 Moon et al. 709/250
OTHER PUBLICATIONS

J. Klensin, Internationalized Domain Names in Applications
(IDNA): Protocol, Aug. 2010. http://tools.ietf.org/html/rfc5891.
USB Implementers’ Forum. Universal Serial Bus (USB): Device
Class Definition for Human Interface Devices (HID). Version 1.11.
Jun. 27, 2001; http://www.usb.org/developers/hidpage/HID1__11.
pdf.

Language Tags in HTML and XML, Sep. 10, 2009, http://www.
w3.org/International/articles/language-tags/Overview.en.php.

Ping, Oracle Manual Pages Section 1M: System Administration
Commands, pp. 1706-1710, 2013 http://www.w3 .org/International/
articles/language-tags/Overview.en.php.

Markus Mathes; “Time Constrained Web Services for Industrial
Automation,” Dissertation from Philipps Universitat-Vlarburg; pp.
1-201, Jul. 9, 2009.

International Search Report and Written Opinion for PCT Applica-
tion No. PCT/US2015/054287 dated Jan. 22, 2016; 14 pgs.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 25 US 9,432,464 B2

/-10

20\

PROCESSOR(S)

14 \ 12 \
USER

INTERFACE SENSOR

18-\ 16 ‘\
NETWORK POWER
INTERFACE SUPPLY

FIG. 1

US 9,432,464 B2

Sheet 2 of 25

Aug. 30, 2016

U.S. Patent

—€0¢

che
il

792 ¢ Ol 992 oIz
anoT1a/1SAN NOILLYDIMYYI
¢ «
LINYIINI
\lvHN
¢ ¥31v3H 100d
(Q
S/N/ owm @mN/ NH/N/ mo,m S,N SN NON
0] TIONVady " _ NN
$ A¥931 (3 @ d f ‘) % OVAH
051 I
902 P g
@m) 3 C1 2 3) L1 3
N — —
[T NV N
ovz~ | T2 T
ya — C— C—) i
......... N L Y T =
252 02
05z
8G¢ 997

U.S. Patent Aug. 30, 2016 Sheet 3 of 25 US 9,432,464 B2

/-90

APPLICATION LAYER 102
PLATFORM LAYER ——100
TRANSPORT LAYER —98
NETWORK LAYER 96

DATA LINK LAYER —~94
PHYSICAL LAYER —92

FG. 3

U.S. Patent Aug. 30, 2016 Sheet 4 of 25 US 9,432,464 B2

1006
1000 1016 1008

1014

FIG. 4

1020
1038 1040 1040
1034

—— -
- —

-~

1026 1030 1052

U.S. Patent Aug. 30, 2016 Sheet 5 of 25 US 9,432,464 B2

1078

1076 1086

WEAVE

FABRIC 1074

/SERVICEY,
. END)

\
weave WO/

FABRIC

SERVICE

WEAVE
FABRIC

1080

1086 FIG. 7 1088

oo DEVICE

DEVICE

1092 FiG 8

U.S. Patent

Aug. 30, 2016

Sheet 6 of 25

US 9,432,464 B2

109{1 ULA (UNIQUE LOCAL ADDRESS)
1100 1102 1104
GLOBAL ID SUBNET ID INTERFACE 1D
——40 BITS———}—16 BITS 64 BITS |
\ / K /
FABRIC ID ™1103 E::g@ 9
1105
ASSIGN VIRTUAL ADDRESS | 1106
TO PERIPHERY NODE
MAINTAIN LIST OF | 1108
PERIPHERY NODES
MONITOR FOR NEIGHBOR
SOLICITATION MESSAGE OF | 1110
VIRTUAL ADDRESS
IN LIST
ASSIGN VIRTUAL ADDRESS TO
HUB NETWORK INTERFACE |—1112
FOR ROUTING NODE
RESEND TO NEIGHBOR
SOLICITATION MESSAGE AND |—1114
RECEIVE PACKET
REWRITE DESTINATION | 1116
ADDRESS
FORWARD PACKET — 1118

FiG. 10

U.S. Patent Aug. 30, 2016 Sheet 7 of 25 US 9,432,464 B2

1120

/1122 /1124 /1126

TAG LENGTH VALUE

FIG. 1

U.S. Patent Aug. 30, 2016 Sheet 8 of 25 US 9,432,464 B2

GENERAL MESSAGE PROTOCOL

r‘ﬂ__T__F_ﬂ__T__F_ﬂ__T__F_ﬂ__T__r_ﬂ__T__F_1
2 BYTES L15_I ke | Mp—— wh IE,AQIKETJ. LENG-[IH ke | S— iy I_O r~1130
2 BYTES{15. . MESSAGE HEADER . o |~1132
3]-I 1 1 1 1 1 1 I 1 1 1 I 1 1 I16 ﬁ1134
4 BYTES |- MESSAGE ID —
15 0
r‘ﬂ__T__F_ﬂ__T__F_ﬂ__T__F_ﬂ__T__r_ﬂ__T__F_1
163 8
L —
. 1—~1136
8 BYTES — SOURCE NODE ID —
= -
115 0,
| IR (RS P NP R A E PN R SN PP RN ERPNIDIE PUIDUI R SR
r'ﬂ"T'_F_ﬂ'_T_'F_1_'T"F'1"T'_r'1'_T_'F_1
103 48,
| 11138
8 BYTES i— DESTINATION NODE ID —
|
— —
11 1
|___I__J.__I.__l__.l.__I.__I__J.__I.__l__J.__I___I__J.__I___I
2 BYTESI1S . KEYID . #1140
| ISP PR R PN NN RPN N PR R SN PR R SR P R S
AT Tt rTAaAT T T T AT T T T I T TTTI AT T T T T
2 BYTES L15_I ke | Np—_—) wh PbYl:IOADJ. LENGIIH ke | S— iy I_O r‘1142
r‘ﬂ__T__F_ﬂ__T__F_ﬂ__T__F_ﬂ__T__r_ﬂ__T__r_1
. 11144
VARIABLE — INTIALIZATION VECTOR —
L__I__J.__I.__l__.l.__I.__I__J.__I.__l__J.__I___I__J.__I___:
T e e e e Y
: L1146
VARIABLE ! (— APPLICATION PAYLOAD —!
| 1
:r‘ﬂ__T__F_ﬂ__T__F_1__T__F_ﬂ__T__r_ﬂ__T__F_1:
| L1148
VARIABLE | — MESSAGE INTEGRITY CHECK =
| 1
::___I__J.__I.__I__.I.__I.__I__J.__I.__I__J.__I___l__J.__I___I L1152
Ir‘ﬂ__T__F_ﬂ__T__F_1__T__F_ﬂ__T__r_ﬂ__T__F_1'
r L1150
VARIABLE | .— PADDING i
iL__I__J.__I.__l__.l.__l.__l__J.__I.__l__J.__I___I__J.__I___::
T—_—_'I_—_—_T_—_—T'_—_'I_—_—_T_—_—T'_—_'I_—_—TI'_'_—T'_—_'I_—_—_T_—_—l_'_'_'l_—_—_'l'_—_'l_'_—_'l_
] 1154

112/; G, 12

L—
VARIABLE — MESSAGE SIGNATURE —i
1

U.S. Patent Aug. 30, 2016 Sheet 9 of 25 US 9,432,464 B2

1132
o 1158 1160
| ./.1156) | I/|1162 | I/|1164
15 VERSION [~ |- | S| D | ENCRYPTION TYPE | SIGNATURE TYPE O
——4 BITS—+—4 BITS—— 4 BITS—+—4 BITS —
FiG 13
1140
1166 1168
15 KEY TYPE 12| 11 KEY NUMBER 0
—— 4 BITS 12 BITS

FIG. 14

U.S. Patent Aug. 30, 2016 Sheet 10 of 25 US 9,432,464 B2

1146
N
—8 BITS——8 BITS ————16 BITS —
o U700 72 3
VERSION |{ MSG TYPE || EXCHANGE ID —1174
PROFILE D —1176
T T T T T T T s T T T T T T T T s T T T T T T T ':
1
! PROFILE-SPECIFIC HEADERS \~1178
lomm oo mmmmmcmmmcmmmmcmmmcmeee 3
APPLICATION PAYLOAD SUB-FIELD —1180

FIG. 15

US 9,432,464 B2

Sheet 11 of 25

Aug. 30, 2016

U.S. Patent

U5E— [BNIE0GTY SNLYIS FosE THOD
are— INRER 1 BERE —orE
VvE-+ ININTDYNYN Y1v0
OE—id ALALZEINNGD HAMOd J BT P o
Sped] AHOLITHIG FUA0 ESAEN 20430 NOILIMD530 onis HA8eE
ESLEES RERIENE SELREVE FHAG
BEE—1 A UALLOINNGD 30IA301 43M0d J0IA3G T PEE N CEE
8t BNINDISIACH BNINOISI A ENINOISIACH TOHINOG
IOIANES HUEY HHOMLIN 30130
M M M M
Cle TG YT SEEE A
IABINA TOHINGD 31vadh
OGN WYY iy HOSNIS WL TWI0T ALLIOS
. 3 7 2 . 4 3
g1e 91e PIE e ats 0T 808 30¢

U.S. Patent Aug. 30, 2016 Sheet 12 of 25 US 9,432,464 B2

1182
Ol 1 1 | 1 1 1] 1 1 T | 1 1 |15 "1184
4 BYTES = PROFILE 2]
6 g
» oves 5 s Toluss
IBYTE [0 NEXT STATUS 7 |—1188
VARABLE: _ ADDITIONAL STATUS.INFO _ ~ ~ +—1190
FIG. 17
1184
o . . . PROFLE o 1519
6, . VENDORID 31f~To4

FIG. 18

U.S. Patent Aug. 30, 2016 Sheet 13 of 25 US 9,432,464 B2

1196
SW_UPDATE 1198 SW UPDATE
CLUENT | 1205 1200~ ~ SERVER
<L(SERVICE DISCOVERY 1J>

TL IMAGE ANNOUNCE ~1204 H
i'___ _________________________________ ="
| IMAGE QUERY 1206 |
i !
: IMAGE_QUERY RESPONSE ~1208 i
1 3
| T
I ! !
! L
! DOWNLOAD (—1210 L
1 f :
1 1 1
i DOWNLOAD NOTIFY ~~1212 !
i T1

|

i NOTIFY RESPONSE 1214 !
| i !
1
1 |
! UPDATE NOTIFY ~1216 i
: ———————————————————————————————— > 1
: l
: NOTIFY RESPONSE 1214 i
i TSI B
N I S T]

T o :

I ° |

| 1

| . 1

U.S. Patent

Aug. 30,2016 Sheet 14 of 25 US 9,432,464 B2

1204
IBITE [0 FRAME CONTROL 7 |—1218
O 1 1 1 1 1 1 1 I 1 1 1 I 1 1 1
GBS | PRODUCT SPECIFICATION |
L L L L L L L L L L L L L L |47
L L D N D I SR A A A Y I B R R B
VARMBLE | VENDOR SPECIFIC DATA 11222
e | [5 U U [R TN Y
WRWBE| | VERSION SPECIFICATION . [~1224
L Rt R DR I A . At A R R B R R B
VARIBLE LOCALE SPECIFICATION 11226
e I T T R [Y TN
24806 . INTEGRITY TYPES SUPPORTED [~1228
2.58MS| . UPDATE SCHEMES SUPPORTED |~1230
1218 FIG. 20
1232 1234
/ / I 1 I I I
VENDOR SPECFC FLAG | LOCAE SPECFIUTON FAG| RESERVED 7
—— 18T ———— 1 BT ————— 6 BITS ———
1220 FIG. 21
O 1 1 1 1 1 1 YEND|OR ||D 1 1 1 1 1 |15 ’_1236
16 PRODUCT ID 31 [~1238
32 L L L L L |PRO|DUCT| RE|VISIO|N L L L L |47 ’_1240
FIG. 22
1224
I I |/-|1242| I I I I I |/-}244| I
0 VERSION LENGTH 7 VERSION STRING
————8 BITS | VARIABLE ————
FIG. 23
1226
I I |/}246| I I I I I |/‘}248| I
0 LOCALE STRING LENGTH 7 LOCALE STRING
————8 BITS | VARIABLE—————

FIG. 24

1220

U.S. Patent Aug. 30, 2016 Sheet 15 of 25 US 9,432,464 B2
1228
/1250 1252
0 TYPE LIST LENGTH 7 INTEGRITY TYPE LIST
|78 BITS | VARIABLE ———|
G, 25
1230
1254 1256
I I I | /I’ 1 I 1 I I /I. I 1 I
0 SCHEME LIST LENGTH 7| UPDATE SCHEME LIST
—— 8 BITS | VARIABLE——|
. 2
1208 G. 26
VARIABLE | 'QUERY. STATUS R i
|__'I__'I' -I__'I'____'I'__I_ 'l__l' "ns=r- -I__T____'I']T5_| 12
I [
VARIABLE — URI & 60
1
VAR'ABLE: L--.--;__.__”HT_E_GLR_'TJY__SEE_!E'%T'E’._N?;___J_ l"1262
2 BYTES |0 UPDATE SCHEME 7 [0, UPDATE OPTIONS 7 1266
1264
FIG. 27
1260
O] 1] 1] qu LIENG:I-H] 1 1 1] I].5 "1268
e T
FiG. 28
1262
I I I I 1
0 INTEGRITY TYPE 7 1272
| | | | | | | 1274
- INTEGRITY VALUE —
| | | |

FIG. 29

U.S. Patent Aug. 30, 2016 Sheet 16 of 25 US 9,432,464 B2

12@
1276 1278 1280 1282
1 1 1 1
UPDATE PRIORITY UPDATE CONDITION g%m RESERVED
| | | |
|) — 3 B7S 187) —
FIG. 30
1400
1402 1404 1406
SENDER RECEIVER
1408

FlIG. 31

U.S. Patent Aug. 30, 2016 Sheet 17 of 25 US 9,432,464 B2

1420
N
1 I 1 | |/-14|22| |/-]|-424| | I I 1
2 BYTES [0 TRANSFER CONTROL 7| 8 RANGE CONTROL 15
2 BYTES [0 . FILE DESIGNATOR LENGTH . .15[—1426
2BYTES [0 MAXBIOCKSIZE . 15|~1428
Ol 1 1 I 1 1 1 I 1 1 1 I 1 1 |15
- START OFFSET 2
16 31 |~1430
4-8 BYTES p S IS B s e R e e e e E— —
32 39
0 gy
Ol I 1 | 1 I I | I 1 I | I I 1
- LENGTH ;?—
4-8 BYTES —t——————————+——] 11
32 39
0 gy
0| 1 1 I 1 1 1 I 1 1 1 I 1 1 |].5
1434
VARIABLE |~ FILE DESIGNATOR —
1
1 1 | 1 1 1 | | 1 | 1 1 1 1 | | 1
| 0 15
: :
VARIABLE |— METADATA —i—1480
I ~
1
|
1

1
1
e T T e el L LT T T PR ey S |

FG. 32

U.S. Patent Aug. 30, 2016 Sheet 18 of 25 US 9,432,464 B2

1422
1450 1452 1454 1456
/ / / 1 /I. 1
- | ASWNCH | RORME | SDRME VERSION
|—18m——18m——181——187— 4 BIS {
FiG. 33
1424
1470 1472 1474
- - - | BeomenT | - = | sor | pere
IBYTE | TRANSFER CONTROL [—1502
2BYTES [0 . MAXBLOCKSIZE = . 15|~1504
[A D RN R D DN R I RN RRNN BN RN NN R
VARIABLE & - METADATA -4~1506
L__l__.I.__I.__I___l__J.__I___I___l__J.__I___I__.I.__L__I___
FiG. 35
1520
28YTES (0, SIAUSCODE 16[1522
IBYTE | NEXTSTATUS [—1524
|___I__'I'__'I'__l___l__T__I___l___l__'l__'l'__l___I__T__l'_—=
1
VARIABLE +- ADD'L INFO -4-1526
|
|-__l__-l.__I-__I___l__J.__I.__I__-I__J-__I-__I__.I.—-L--I—-J

FIG. 36

U.S. Patent Aug. 30, 2016 Sheet 19 of 25 US 9,432,464 B2

1540\

1842
0 TRFERCOMROL 7| 8 RANGE CONTROL 15|—1544

T T T T ETAT T Tt T rT AT T TT T AT AT T TT T AT AT T T T T rT A

LO_I L ——d L MA¥I BLJ.OCKl_SléE L e L I_15 r1546
0 I 1 1 | I I I | 1 I I | I 1 I].5
16I Il Il L Il LEINGTII-I (?-_8 IBY-l-IES)I L Il 1 I31 ’-1548
32I I I | I I I | 1 1 I I 1 I39
40 47
HIG. 37
1632
\ [STREANS 1834
VERSION 1636
| DESCRIPTION \rgsg
| RESOURCES N340
§
| U M-1645
e
R 1646
LT IIIITIITITIIIITIIITIIIIIIIIITIIIIIL
IDESCRPTORS] Mo15a7
i i
;| DESCRIPTOR | IDENTIFIER: 1 ko jeen SRIEPY
i
O !
i po i
3 DESCRIPTOR | IDENTIFIER: 2 h1p88 M11654
I I I I I I I
RECORD3 M-1644
STREAM | IDENTIFIER: 1 b1g5g 1556
T e S
STReaM LIDENTAERZ bjess) 11656
T e — e
STRem LDENTRERSS bjgos ___ Hrese

U.S. Patent Aug. 30, 2016 Sheet 20 of 25 US 9,432,464 B2

EXTERNAL DESCRIPTOR 1648
DESCRIPTOR ~-1650
DESCRIFTOR M- 1650
DESCRIPTOR M- 1650
FIG. 39

DESCRIPTOR 1654
IDENTIFIER M- 1658
STREAM PERIODICITY M-1660
TYFE 1662
FIELDS M- 1664
FIELD M 1680
e Mpe
LT o
RO s
o e
AL . =

U.S. Patent

Aug. 30,2016 Sheet 21 of 25 US 9,432,464 B2

DERIVATION L _1eca
OPERATIONS 1674

OPERATION 1678

N, | S
T E

OENTFER e - 16?832@@ "
FIELD 1680

VALID “-1682

RELATIVE o 15ms

SIGNED 1686

SIZE L1588

COUNT 1690
eeowe g

oescRPTON Mgy
oemvaTN
=
I,
D e
pwvSCALMAXMUM 1700

mmmmmmmmmmmmmmmmmmmmm

FIG. 42

U.S. Patent Aug. 30, 2016 Sheet 22 of 25 US 9,432,464 B2

UNITS 1702
SYSTEM 1710
2 §
; DESCRIPTION 1712
S° TROTER IR TN X NI WD R OIE SIX IR OO TE TEONEDORE TR TR OGN O U I I I OTO TR TR T W OE Mmoo o o e §
; EXPONENT 1714
UNITS 1716
QUANTITY $790
I T T T T T
| EXPONENT Nz
{ﬁ@ﬁ uuuuuuuuuuu 1718
| QUANTITY L 720
| H
p o om T mmmmmmm e mm e m e m mm—m— [
| EXPONENT AR Y
Hbebaietetebubeieietetetetnbebeubuiiubebetetetubb et
55555' mmmmmmmmmmm M- 1718
| QUANTITY L1720
o o et e e e e e e e e e ot e e et e e e e e e et e e e e H
T m "I
| EXPONENT X R I
T e
TIME PERIOD e 1675
EXPONENT 1704

FIG. 44

U.S. Patent Aug. 30,2016

Sheet 23 of 25

US

9,432,464 B2

TIME BASE 1570
REFERENCE 1796
EXPONENT 1708
SYNCHRONIZATION 1730

STREAM 1656
DENTIFIER NP

;’ """"""""""""""""""""""""""""""""""""""" i

A A RYEL:

;oo mmmmmmmmmmm e]

M RO 734
DATA 1736

US 9,432,464 B2

Sheet 24 of 25

Aug. 30, 2016

U.S. Patent

£ = INAOD T=INNOD
m I
T=QIA 1= (1A T=QMVA 0=0N¥A T=QITVA
=318 G=3718 G=3718 =378 =378
m m | M |
2 91419 OT 31121 |81 T G| Ot T 8T |61 02 12 =Yg
Ly 9id
1= INNOD T=iNAOO T=1NN00
| o
H
T=0IWA 0=QrVA T=arTvA
£=3718 T=3718 £=37I
; W
LT 2 1elv 196 914 816101 Ty

U.S. Patent

Aug. 30, 2016 Sheet 25 of 25

18%\

1802

| OBTAIN DATA SAMPLES FROM SENSQR |

v

1804

PERFORM

MATHEMATICAL OPERATION ON THE DATA

y

1808

ENCAFSULATE THE DATASAMPLES

ACCORDING TG Trik TIME VARIANT DATA

'

1810

SEND
THE ENCAPSULATED DATA SAMPLES

FiG. 49

US 9,432,464 B2

US 9,432,464 B2

1
TIME VARIANT DATA PROFILE FOR A
FABRIC NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Provisional Appli-
cation Ser. No. 62/061,593, filed Oct. 8, 2014, entitled
“FABRIC NETWORK,” which is incorporated by reference
herein in its entirety.

BACKGROUND

This disclosure relates data communication profiles for
systems, devices, methods, and related computer program
products for smart buildings, such as a smart home. This
disclosure relates to a fabric network that couples electronic
devices using one or more network types and a time variant
data profile used to determine chronology of events of
multiple devices in the home.

Some homes today are equipped with smart home net-
works to provide automated control of devices, appliances
and systems, such as heating, ventilation, and air condition-
ing (“HVAC”) systems, lighting systems, alarm systems,
and home theater and entertainment systems. Smart home
networks may include control panels that a person may use
to input settings, preferences, and scheduling information
that the smart home network uses to provide automated
control the various devices, appliances and systems in the
home. For example, a person may input a desired tempera-
ture and a schedule indicating when the person is away from
home.

These networks may include various devices that are
sleepy and/or have intermittent connection between each
other. The data stored in each of these devices may then not
be chronologically accurate if only using clock times of the
devices while the devices are awake. Furthermore, it may be
unclear how entries in data from different devices relate to
each other in time when events between all the devices may
not be linearly recorded.

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present techniques, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclo-
sure. Accordingly, it should be understood that these state-
ments are to be read in this light, and not as admissions of
prior art.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Embodiments of the present disclosure relate to systems
and methods a fabric network that includes one or more
logical networks that enables devices connected to the fabric
to communicate with each other using a list of protocols
and/or profiles known to the devices. The communications
between the devices may follow a typical message format
that enables the devices to understand communications
between the devices regardless of which logical networks

10

15

20

25

30

35

40

45

50

55

60

65

2

the communicating devices are connected to in the fabric.
Within the message format, a payload of data may be
included for the receiving device to store and/or process.
The format and the contents of the payload may vary
according to a header (e.g., profile tag) within the payload
that indicates a specific profile (including one or more
protocols) and/or a type of message/action that is being sent
according to the profile.

According to some embodiments, two or more devices in
a fabric may communicate using various profiles. For
example, in certain embodiments, a data management pro-
file, a network provisioning profile, or a core profile (includ-
ing status reporting protocols) that are available to devices
connected to the fabric. Also, a time-variant data profile may
be used for reporting and exchanging time-variant historical
data among endpoints within a smart network. In some
embodiments, at least a portion of the role of any device in
the smart network is to observe and record the environment
of which the device is a part. This observation and reporting
is done over time and reporting those time-variant historical
observations to other endpoints in the smart network. The
time-variant data profile defines a set of constants and
messages for exchanging these time-variant historical obser-
vations atop the bulk data transfer protocol. In some embodi-
ments, this profile has an identified profile identifier that
indicates that a communication includes data in the time-
variant data profile.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure.
Further features may also be incorporated in these various
aspects as well. These refinements and additional features
may exist individually or in any combination. For instance,
various features discussed below in relation to one or more
of'the illustrated embodiments may be incorporated into any
of the above-described aspects of the present disclosure
alone or in any combination. The brief summary presented
above is intended only to familiarize the reader with certain
aspects and contexts of embodiments of the present disclo-
sure without limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better under-
stood upon reading the following detailed description and
upon reference to the drawings in which:

FIG. 1 is a block diagram of an electronic device having
that may be interconnected with other devices using a fabric
network, in accordance with an embodiment;

FIG. 2 illustrates a block diagram of a home environment
in which the general device of FIG. 1 may communicate
with other devices via the fabric network, in accordance with
an embodiment;

FIG. 3 illustrates a block diagram of an Open Systems
Interconnection (OSI) model that characterizes a communi-
cation system for the home environment of FIG. 2, in
accordance with an embodiment;

FIG. 4 illustrates the fabric network having a single
logical network topology, in accordance with an embodi-
ment;

FIG. 5 illustrates the fabric network having a star network
topology, in accordance with an embodiment;

FIG. 6 illustrates the fabric network having an overlap-
ping networks topology, in accordance with an embodiment;

FIG. 7 illustrates a service communicating with one or
more fabric networks, in accordance with an embodiment;

US 9,432,464 B2

3

FIG. 8 illustrates two devices in a fabric network in
communicative connection, in accordance with an embodi-
ment;

FIG. 9 illustrates a unique local address format (ULA)
that may be used to address devices in a fabric network, in
accordance with an embodiment;

FIG. 10 illustrates a process for proxying periphery
devices on a hub network, in accordance with an embodi-
ment;

FIG. 11 illustrates a tag-length-value (TLV) packet that
may be used to transmit data over the fabric network, in
accordance with an embodiment;

FIG. 12 illustrates a general message protocol (GMP) that
may be used to transmit data over the fabric network that
may include the TLV packet of FIG. 11, in accordance with
an embodiment;

FIG. 13 illustrates a message header field of the GMP of
FIG. 12, in accordance with an embodiment;

FIG. 14 illustrates a key identifier field of the GMP of
FIG. 12, in accordance with an embodiment;

FIG. 15 illustrates an application payload field of the
GMP of FIG. 12, in accordance with an embodiment;

FIG. 16 illustrates a profile library that includes various
profiles that may be used in the application payload field of
FIG. 15;

FIG. 17 illustrates a status reporting schema that may be
used to update status information in the fabric network, in
accordance with an embodiment;

FIG. 18 illustrates a profile field of the status reporting
schema of FIG. 17, in accordance with an embodiment;

FIG. 19 illustrates a protocol sequence that may be used
to perform a software update between a client and a server,
in accordance with an embodiment;

FIG. 20 illustrates an image query frame that may be used
in the protocol sequence of FIG. 19, in accordance with an
embodiment;

FIG. 21 illustrates a frame control field of the image query
frame of FIG. 20, in accordance with an embodiment;

FIG. 22 illustrates a product specification field of the
image query frame of FIG. 20, in accordance with an
embodiment;

FIG. 23 illustrates a version specification field of the
image query frame of FIG. 20, in accordance with an
embodiment;

FIG. 24 illustrates a locale specification field of the image
query frame of FIG. 20, in accordance with an embodiment;

FIG. 25 illustrates an integrity types supported field of the
image query frame of FIG. 20, in accordance with an
embodiment;

FIG. 26 illustrates an update schemes supported field of
the image query frame of FIG. 20, in accordance with an
embodiment;

FIG. 27 illustrates an image query response frame that
may be used in the protocol sequence of FIG. 19, in
accordance with an embodiment;

FIG. 28 illustrates a uniform resource identifier (URI)
field of the image query response frame of FIG. 27, in
accordance with an embodiment;

FIG. 29 illustrates a integrity specification field of the
image query response frame of FIG. 27, in accordance with
an embodiment;

FIG. 30 illustrates an update scheme field of the image
query response frame of FIG. 27, in accordance with an
embodiment;

FIG. 31 illustrates a communicative connection between
a sender and a receiver in a bulk data transfer, in accordance
with an embodiment;

20

25

30

35

40

45

55

4

FIG. 32 illustrates a SendInit message that may be used to
initiate the communicative connection by the sender of FIG.
31, in accordance with an embodiment;

FIG. 33 illustrates a transfer control field of the SendInit
message of FIG. 32, in accordance with an embodiment;

FIG. 34 illustrates a range control field of the SendInit
message of FIG. 33, in accordance with an embodiment;

FIG. 35 illustrates a SendAccept message that may be
used to accept a communicative connection proposed by the
SendlInit message of FIG. 32 sent by the sender of FIG. 32,
in accordance with an embodiment;

FIG. 36 illustrates a SendReject message that may be used
to reject a communicative connection proposed by the
SendlInit message of FIG. 32 sent by the sender of FIG. 32,
in accordance with an embodiment;

FIG. 37 illustrates a ReceiveAccept message that may be
used to accept a communicative connection proposed by the
receiver of FIG. 32, in accordance with an embodiment;

FIG. 38 illustrates a streams structure of the used by a
time variant data profile, in accordance with an embodiment;

FIG. 39 illustrates an External Descriptor structure that is
an array of Descriptor elements, in accordance with an
embodiment;

FIG. 40 illustrates a descriptor structure of the streams
structure of FIG. 38, in accordance with an embodiment;

FIG. 41 illustrates a derivation structure of the descriptor
structure of FIG. 40, in accordance with an embodiment;

FIG. 42 illustrates a field structure of the descriptor
structure of FIG. 40, in accordance with an embodiment;

FIG. 43 illustrates a units structure of the field structure of
FIG. 39, in accordance with an embodiment;

FIG. 44 illustrates a time period structure of the descriptor
structure of FIG. 40, in accordance with an embodiment;

FIG. 45 illustrates a time base structure of the descriptor
structure of FIG. 40, in accordance with an embodiment;

FIG. 46 illustrates a stream substructure of the streams
structure of FIG. 38, in accordance with an embodiment;

FIG. 47 illustrates a flexible data arrangement of data that
may be sent using the time variant data profile, in accor-
dance with an embodiment;

FIG. 48 illustrates another flexible data arrangement of
data that may be sent using the time variant data profile, in
accordance with an embodiment; and

FIG. 49 illustrates a flow diagram of a process that may
be used to generate encapsulated data samples for time
variant data, in accordance with an embodiment.

DETAILED DESCRIPTION

One or more specific embodiments of the present disclo-
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, in an effort to provide a concise description of
these embodiments, features of an actual implementation
may not be described in the specification. It should be
appreciated that in the development of any such actual
implementation, as in any engineering or design project,
numerous implementation-specific decisions must be made
to achieve the developers’ specific goals, such as compli-
ance with system-related and business-related constraints,
which may vary from one implementation to another. More-
over, it should be appreciated that such a development effort
might be complex and time consuming, but may neverthe-
less be a routine undertaking of design, fabrication, and
manufacture for those of ordinary skill having the benefit of
this disclosure.

US 9,432,464 B2

5

When introducing elements of various embodiments of
the present disclosure, the articles “a,” “an,” and “the” are
intended to mean that there are one or more of the elements.
The terms “comprising,” “including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements. Additionally,
it should be understood that references to “one embodiment”
or “an embodiment” of the present disclosure are not
intended to be interpreted as excluding the existence of
additional embodiments that also incorporate the recited
features.

Embodiments of the present disclosure relate generally to
an efficient fabric network that may be used by devices
and/or services communicating with each other in a home
environment. Generally, consumers living in homes may
find it useful to coordinate the operations of various devices
within their home such that of their devices are operated
efficiently. For example, a thermostat device may be used to
detect a temperature of a home and coordinate the activity of
other devices (e.g., lights) based on the detected tempera-
ture. In this example, the thermostat device may detect a
temperature that may indicate that the temperature outside
the home corresponds to daylight hours. The thermostat
device may then convey to the light device that there may be
daylight available to the home and that thus the light should
turn off.

In addition to operating these devices efficiently, consum-
ers generally prefer to use user-friendly devices that involve
a minimum amount of set up or initialization. That is,
consumers may generally prefer to purchase devices that are
fully operational after performing a few number initializa-
tion steps that may be performed by almost any individual
regardless of age or technical expertise.

With the foregoing in mind, to enable to effectively
communicate data between each other within the home
environment, the devices may use a fabric network that
includes one or more logical networks to manage commu-
nication between the devices. That is, the efficient fabric
network may enable numerous devices within a home to
communicate with each other using one or more logical
networks. The communication network may support Internet
Protocol version 6 (IPv6) communications such that each
connected device may have a unique local address (LA).
Moreover, to enable each device to integrate with a home, it
may be useful for each device to communicate within the
network using low amounts of power. That is, by enabling
devices to communicate using low power, the devices may
be placed anywhere in a home without being coupled to a
continuous power source (e.g., battery-powered).

1. Fabric Introduction

By way of introduction, FIG. 1 illustrates an example of
a general device 10 that may that may communicate with
other like devices within a home environment. In one
embodiment, the device 10 may include one or more sensors
12, a user-interface component 14, a power supply 16 (e.g.,
including a power connection and/or battery), a network
interface 18, a processor 20, and the like. Particular sensors
12, user-interface components 14, and power-supply con-
figurations may be the same or similar with each devices 10.
However, it should be noted that in some embodiments, each
device 10 may include particular sensors 12, user-interface
components 14, power-supply configurations, and the like
based on a device type or model.

The sensors 12, in certain embodiments, may detect
various properties such as acceleration, temperature, humid-
ity, water, supplied power, proximity, external motion,
device motion, sound signals, ultrasound signals, light sig-

10

15

20

25

30

35

40

45

50

55

60

65

6

nals, fire, smoke, carbon monoxide, global-positioning-sat-
ellite (GPS) signals, radio-frequency (RF), other electro-
magnetic signals or fields, or the like. As such, the sensors
12 may include temperature sensor(s), humidity sensor(s),
hazard-related sensor(s) or other environmental sensor(s),
accelerometer(s), microphone(s), optical sensors up to and
including camera(s) (e.g., charged coupled-device or video
cameras), active or passive radiation sensors, GPS
receiver(s) or radiofrequency identification detector(s).
While FIG. 1 illustrates an embodiment with a single sensor,
many embodiments may include multiple sensors. In some
instances, the device 10 may includes one or more primary
sensors and one or more secondary sensors. Here, the
primary sensor(s) may sense data central to the core opera-
tion of the device (e.g., sensing a temperature in a thermostat
or sensing smoke in a smoke detector), while the secondary
sensor(s) may sense other types of data (e.g., motion, light
or sound), which can be used for energy-efficiency objec-
tives or smart-operation objectives.

One or more user-interface components 14 in the device
10 may receive input from the user and/or present informa-
tion to the user. The user-interface component 14 may also
include one or more user-input components that may receive
information from the user. The received input may be used
to determine a setting. In certain embodiments, the user-
input components may include a mechanical or virtual
component that responds to the user’s motion. For example,
the user can mechanically move a sliding component (e.g.,
along a vertical or horizontal track) or rotate a rotatable ring
(e.g., along a circular track), the user’s motion along a
touchpad may be detected, or motions/gestures may be
detected using a contactless gesture detection sensor (e.g.,
infrared sensor or camera). Such motions may correspond to
a setting adjustment, which can be determined based on an
absolute position of a user-interface component 104 or based
on a displacement of a user-interface components 104 (e.g.,
adjusting a setpoint temperature by 1 degree F. for every 10°
rotation of a rotatable-ring component). Physically and
virtually movable user-input components can allow a user to
set a setting along a portion of an apparent continuum. Thus,
the user may not be confined to choose between two discrete
options (e.g., as would be the case if up and down buttons
were used) but can quickly and intuitively define a setting
along a range of possible setting values. For example, a
magnitude of a movement of a user-input component may be
associated with a magnitude of a setting adjustment, such
that a user may dramatically alter a setting with a large
movement or finely tune a setting with s small movement.

The user-interface components 14 may also include one
or more buttons (e.g., up and down buttons), a keypad, a
number pad, a switch, a microphone, and/or a camera (e.g.,
to detect gestures). In one embodiment, the user-input com-
ponent 14 may include a click-and-rotate annular ring com-
ponent that may enable the user to interact with the com-
ponent by rotating the ring (e.g., to adjust a setting) and/or
by clicking the ring inwards (e.g., to select an adjusted
setting or to select an option). In another embodiment, the
user-input component 14 may include a camera that may
detect gestures (e.g., to indicate that a power or alarm state
of a device is to be changed). In some instances, the device
10 may have one primary input component, which may be
used to set various types of settings. The user-interface
components 14 may also be configured to present informa-
tion to a user via, e.g., a visual display (e.g., a thin-film-
transistor display or organic light-emitting-diode display)
and/or an audio speaker.

US 9,432,464 B2

7

The power-supply component 16 may include a power
connection and/or a local battery. For example, the power
connection may connect the device 10 to a power source
such as a line voltage source. In some instances, an AC
power source can be used to repeatedly charge a (e.g.,
rechargeable) local battery, such that the battery may be used
later to supply power to the device 10 when the AC power
source is not available. In certain embodiments, the power
supply component 16 may include intermittent or reduced
power connections that may be less than that provided via an
AC plug in the home. In certain embodiments, devices with
batteries and/or intermittent or reduced power may be oper-
ated as “sleepy devices” that alternate between an online/
awake state and an offline/sleep state to reduce power
consumption.

The network interface 18 may include one or more
components that enable the device 10 to communicate
between devices using one or more logical networks within
the fabric network. In one embodiment, the network inter-
face 18 may communicate using an efficient network layer
as part of its Open Systems Interconnection (OSI) model. In
certain embodiments, one component of the network inter-
face 18 may communicate with one logical network (e.g.,
WiF1i) and another component of the network interface may
communicate with another logical network (e.g., 802.15.4).
In other words, the network interface 18 may enable the
device 10 to wirelessly communicate via multiple IPv6
networks. As such, the network interface 18 may include a
wireless card, Ethernet port, and/or other suitable transceiver
connections.

The processor 20 may support one or more of a variety of
different device functionalities. As such, the processor 20
may include one or more processors configured and pro-
grammed to carry out and/or cause to be carried out one or
more of the functionalities described herein. In one embodi-
ment, the processor 20 may include general-purpose pro-
cessors carrying out computer code stored in local memory
(e.g., flash memory, hard drive, random access memory),
special-purpose processors or application-specific integrated
circuits, other types of hardware/firmware/software process-
ing platforms, and/or some combination thereof. Further, the
processor 20 may be implemented as localized versions or
counterparts of algorithms carried out or governed remotely
by central servers or cloud-based systems, such as by virtue
of running a Java virtual machine (JVM) that executes
instructions provided from a cloud server using Asynchro-
nous Javascript and XML (AJAX) or similar protocols. By
way of example, the processor 20 may detect when a
location (e.g., a house or room) is occupied, up to and
including whether it is occupied by a specific person or is
occupied by a specific number of people (e.g., relative to one
or more thresholds). In one embodiment, this detection can
occur, e.g., by analyzing microphone signals, detecting user
movements (e.g., in front of a device), detecting openings
and closings of doors or garage doors, detecting wireless
signals, detecting an IP address of a received signal, detect-
ing operation of one or more devices within a time window,
or the like. Moreover, the processor 20 may include image
recognition technology to identify particular occupants or
objects.

In some instances, the processor 20 may predict desirable
settings and/or implement those settings. For example, based
on presence detection, the processor 20 may adjust device
settings to, e.g., conserve power when nobody is home or in
a particular room or to accord with user preferences (e.g.,
general at-home preferences or user-specific preferences).
As another example, based on the detection of a particular

10

15

20

25

30

35

40

45

50

55

60

65

8

person, animal or object (e.g., a child, pet or lost object), the
processor 20 may initiate an audio or visual indicator of
where the person, animal or object is or may initiate an alarm
or security feature if an unrecognized person is detected
under certain conditions (e.g., at night or when lights are
off).

In some instances, devices may interact with each other
such that events detected by a first device influences actions
of a second device using one or more common profiles
between the devices. For example, a first device can detect
that a user has pulled into a garage (e.g., by detecting motion
in the garage, detecting a change in light in the garage or
detecting opening of the garage door). The first device can
transmit this information to a second device via the fabric
network, such that the second device can, e.g., adjust a home
temperature setting, a light setting, a music setting, and/or a
security-alarm setting. As another example, a first device can
detect a user approaching a front door (e.g., by detecting
motion or sudden light pattern changes). The first device
may cause a general audio or visual signal to be presented
(e.g., such as sounding of a doorbell) or cause a location-
specific audio or visual signal to be presented (e.g., to
announce the visitor’s presence within a room that a user is
occupying).

With the foregoing in mind, FIG. 2 illustrates a block
diagram of a home environment 30 in which the device 10
of FIG. 1 may communicate with other devices via the fabric
network. The depicted home environment 30 may include a
structure 32 such as a house, office building, garage, or
mobile home. It will be appreciated that devices can also be
integrated into a home environment that does not include an
entire structure 32, such as an apartment, condominium,
office space, or the like. Further, the home environment 30
may control and/or be coupled to devices outside of the
actual structure 32. Indeed, several devices in the home
environment 30 need not physically be within the structure
32 at all. For example, a device controlling a pool heater 34
or irrigation system 36 may be located outside of the
structure 32.

The depicted structure 32 includes multiple rooms 38,
separated at least partly from each other via walls 40. The
walls 40 can include interior walls or exterior walls. Each
room 38 can further include a floor 42 and a ceiling 44.
Devices can be mounted on, integrated with and/or sup-
ported by the wall 40, the floor 42, or the ceiling 44.

The home environment 30 may include multiple devices,
including intelligent, multi-sensing, network-connected
devices that may integrate seamlessly with each other and/or
with cloud-based server systems to provide any of a variety
of useful home objectives. One, more or each of the devices
illustrated in the home environment 30 may include one or
more sensors 12, a user interface 14, a power supply 16, a
network interface 18, a processor 20 and the like.

Example devices 10 may include a network-connected
thermostat 46 that may detect ambient climate characteris-
tics (e.g., temperature and/or humidity) and control a heat-
ing, ventilation and air-conditioning (HVAC) system 48.
Another example device 10 may include a hazard detection
unit 50 that can detect the presence of a hazardous substance
and/or a hazardous condition in the home environment 30
(e.g., smoke, fire, or carbon monoxide). Additionally, entry-
way interface devices 52, which can be termed a “smart
doorbell”, can detect a person’s approach to or departure
from a location, control audible functionality, announce a
person’s approach or departure via audio or visual means, or
control settings on a security system (e.g., to activate or
deactivate the security system).

US 9,432,464 B2

9

In certain embodiments, the device 10 may include a light
switch 54 that may detect ambient lighting conditions, detect
room-occupancy states, and control a power and/or dim state
of one or more lights. In some instances, the light switches
54 may control a power state or speed of a fan, such as a
ceiling fan.

Additionally, wall plug interfaces 56 may detect occu-
pancy of a room or enclosure and control supply of power
to one or more wall plugs (e.g., such that power is not
supplied to the plug if nobody is at home). The device 10
within the home environment 30 may further include an
appliance 58, such as refrigerators, stoves and/or ovens,
televisions, washers, dryers, lights (inside and/or outside the
structure 32), stereos, intercom systems, garage-door open-
ers, floor fans, ceiling fans, whole-house fans, wall air
conditioners, pool heaters 34, irrigation systems 36, security
systems, and so forth. While descriptions of FIG. 2 may
identify specific sensors and functionalities associated with
specific devices, it will be appreciated that any of a variety
of sensors and functionalities (such as those described
throughout the specification) may be integrated into the
device 10.

In addition to containing processing and sensing capa-
bilities, each of the example devices described above may be
capable of data communications and information sharing
with any other device, as well as to any cloud server or any
other device that is network-connected anywhere in the
world. In one embodiment, the devices 10 may send and
receive communications via a fabric network discussed
below. In one embodiment, fabric may enable the devices 10
to communicate with each other via one or more logical
networks. As such, certain devices may serve as wireless
repeaters and/or may function as bridges between devices,
services, and/or logical networks in the home environment
that may not be directly connected (i.e., one hop) to each
other.

In one embodiment, a wireless router 60 may further
communicate with the devices 10 in the home environment
30 via one or more logical networks (e.g., WiFi). The
wireless router 60 may then communicate with the Internet
62 or other network such that each device 10 may commu-
nicate with a remote service or a cloud-computing system 64
through the Internet 62. The cloud-computing system 64
may be associated with a manufacturer, support entity or
service provider associated with a particular device 10. As
such, in one embodiment, a user may contact customer
support using a device itself rather than using some other
communication means such as a telephone or Internet-
connected computer. Further, software updates can be auto-
matically sent from the cloud-computing system 64 or
devices in the home environment 30 to other devices in the
fabric (e.g., when available, when purchased, when
requested, or at routine intervals).

By virtue of network connectivity, one or more of the
devices 10 may further allow a user to interact with the
device even if the user is not proximate to the device. For
example, a user may communicate with a device using a
computer (e.g., a desktop computer, laptop computer, or
tablet) or other portable electronic device (e.g., a smart-
phone) 66. A webpage or application may receive commu-
nications from the user and control the device 10 based on
the received communications. Moreover, the webpage or
application may present information about the device’s
operation to the user. For example, the user can view a
current setpoint temperature for a device and adjust it using
a computer that may be connected to the Internet 62. In this
example, the thermostat 46 may receive the current setpoint

10

15

20

25

30

35

40

45

50

55

60

65

10

temperature view request via the fabric network via one or
more underlying logical networks.

In certain embodiments, the home environment 30 may
also include a variety of non-communicating legacy appli-
ances 68, such as old conventional washer/dryers, refrigera-
tors, and the like which can be controlled, albeit coarsely
(ON/OFF), by virtue of the wall plug interfaces 56. The
home environment 30 may further include a variety of
partially communicating legacy appliances 70, such as infra-
red (IR) controlled wall air conditioners or other IR-con-
trolled devices, which can be controlled by IR signals
provided by the hazard detection units 50 or the light
switches 54.

As mentioned above, each of the example devices 10
described above may form a portion of a fabric network.
Generally, the fabric network may be part of an Open
Systems Interconnection (OSI) model 90 as depicted in FIG.
4. The OSI model 90 illustrates functions of a communica-
tion system with respect to abstraction layers. That is, the
OSI model may specify a networking framework or how
communications between devices may be implemented. In
one embodiment, the OSI model may include six layers: a
physical layer 92, a data link layer 94, a network layer 96,
a transport layer 98, a platform layer 100, and an application
layer 102. Generally, each layer in the OSI model 90 may
serve the layer above it and may be served by the layer
below it.

Keeping this in mind, the physical layer 92 may provide
hardware specifications for devices that may communicate
with each other. As such, the physical layer 92 may establish
how devices may connect to each other, assist in managing
how communication resources may be shared between
devices, and the like.

The data link layer 94 may specify how data may be
transferred between devices. Generally, the data link layer
94 may provide a way in which data packets being trans-
mitted may be encoded and decoded into bits as part of a
transmission protocol.

The network layer 96 may specify how the data being
transferred to a destination node is routed. The network layer
96 may also provide a security protocol that may maintain
the integrity of the data being transferred. The efficient
network layer discussed above corresponds to the network
layer 96. In certain embodiments, the network layer 96 may
be completely independent of the platform layer 100 and
include any suitable IPv6 network type (e.g., WiFi, Ethernet,
HomePlug, 802.15.4, etc).

The transport layer 98 may specify a transparent transfer
of the data from a source node to a destination node. The
transport layer 98 may also control how the transparent
transfer of the data remains reliable. As such, the transport
layer 98 may be used to verify that data packets intended to
transfer to the destination node indeed reached the destina-
tion node. Example protocols that may be employed in the
transport layer 98 may include Transmission Control Pro-
tocol (TCP) and User Datagram Protocol (UDP).

The platform layer 100 includes the fabric network and
establishes connections between devices according to the
protocol specified within the transport layer 98 and may be
agnostic of the network type used in the network layer 96.
The platform layer 100 may also translate the data packets
into a form that the application layer 102 may use. The
application layer 102 may support a software application
that may directly interface with the user. As such, the
application layer 102 may implement protocols defined by

US 9,432,464 B2

11

the software application. For example, the software appli-
cation may provide serves such as file transfers, electronic
mail, and the like.

II. Fabric Device Interconnection

As discussed above, a fabric may be implemented using
one or more suitable communications protocols, such as
IPv6 protocols. In fact, the fabric may be partially or
completely agnostic to the underlying technologies (e.g.,
network types or communication protocols) used to imple-
ment the fabric. Within the one or more communications
protocols, the fabric may be implemented using one or more
network types used to communicatively couple electrical
devices using wireless or wired connections. For example,
certain embodiments of the fabric may include Ethernet,
WiFi, 802.15.4, ZigBee®, ISA100.11a, WirelessHART,
MiWi™, power-line networks, and/or other suitable network
types. Within the fabric devices (e.g., nodes) can exchange
packets of information with other devices (e.g., nodes) in the
fabric, either directly or via intermediary nodes, such as
intelligent thermostats, acting as IP routers. These nodes
may include manufacturer devices (e.g., thermostats and
smoke detectors) and/or customer devices (e.g., phones,
tablets, computers, etc.). Additionally, some devices may be
“always on” and continuously powered using electrical
connections. Other devices may have partially reduced
power usage (e.g., medium duty cycle) using a reduced/
intermittent power connection, such as a thermostat or
doorbell power connection. Finally, some devices may have
a short duty cycle and run solely on battery power. In other
words, in certain embodiments, the fabric may include
heterogeneous devices that may be connected to one or more
sub-networks according to connection type and/or desired
power usage. FIGS. 4-6 illustrate three embodiments that
may be used to connect electrical devices via one or more
sub-networks in the fabric.

A. Single Network Topology

FIG. 4 illustrates an embodiment of the fabric 1000
having a single network topology. As illustrated, the fabric
1000 includes a single logical network 1002. The network
1002 could include Ethernet, WiFi, 802.15.4, power-line
networks, and/or other suitable network types in the IPv6
protocols. In fact, in some embodiments where the network
1002 includes a WiFi or Ethernet network, the network 1002
may span multiple WiFi and/or Ethernet segments that are
bridged at a link layer.

The network 1002 includes one or more nodes 1004,
1006, 1008, 1010, 1012, 1014, and 1016, referred to col-
lectively as 1004-1016. Although the illustrated network
1002 includes seven nodes, certain embodiments of the
network 1002 may include one or more nodes intercon-
nected using the network 1002. Moreover, if the network
1002 is a WiFi network, each of the nodes 1004-1016 may
be interconnected using the node 1016 (e.g., WiFi router)
and/or paired with other nodes using WiFi Direct (i.e., WiFi
P2P).

B. Star Network Topology

FIG. 5 illustrates an alternative embodiment of fabric
1000 as a fabric 1018 having a star network topology. The
fabric 1018 includes a hub network 1020 that joins together
two periphery networks 1022 and 1024. The hub network
1020 may include a home network, such as WiFi/Ethernet
network or power line network. The periphery networks
1022 and 1024 may additional network connection types
different of different types than the hub network 1020. For
example, in some embodiments, the hub network 1020 may
be a WilFi/Ethernet network, the periphery network 1022
may include an 802.15.4 network, and the periphery net-

10

15

20

25

30

35

40

45

50

55

60

65

12

work 1024 may include a power line network, a ZigBee®
network, a ISA100.11a network, a WirelessHART, network,
or a MiWi™ network. Moreover, although the illustrated
embodiment of the fabric 1018 includes three networks,
certain embodiments of the fabric 1018 may include any
number of networks, such as 2, 3, 4, 5, or more networks. In
fact, some embodiments of the fabric 1018 include multiple
periphery networks of the same type.

Although the illustrated fabric 1018 includes fourteen
nodes, each referred to individually by reference numbers
1024-1052, respectively, it should be understood that the
fabric 1018 may include any number of nodes. Communi-
cation within each network 1020, 1022, or 1024, may occur
directly between devices and/or through an access point,
such as node 1042 in a WiFi/Ethernet network. Communi-
cations between periphery network 1022 and 1024 passes
through the hub network 1020 using inter-network routing
nodes. For example, in the illustrated embodiment, nodes
1034 and 1036 are be connected to the periphery network
1022 using a first network connection type (e.g., 802.15.4)
and to the hub network 1020 using a second network
connection type (e.g., WiFi) while the node 1044 is con-
nected to the hub network 1020 using the second network
connection type and to the periphery network 1024 using a
third network connection type (e.g., power line). For
example, a message sent from node 1026 to node 1052 may
pass through nodes 1028, 1030, 1032, 1036, 1042, 1044,
1048, and 1050 in transit to node 1052.

C. Overlapping Networks Topology

FIG. 6 illustrates an alternative embodiment of the fabric
1000 as a fabric 1054 having an overlapping networks
topology. The fabric 1054 includes networks 1056 and 1058.
As illustrated, each of the nodes 1062, 1064, 1066, 1068,
1070, and 1072 may be connected to each of the networks.
In other embodiments, the node 1072 may include an access
point for an Ethernet/WiFi network rather than an end point
and may not be present on either the network 1056 or
network 1058, whichever is not the Ethernet/WiFi network.
Accordingly, a communication from node 1062 to node
1068 may be passed through network 1056, network 1058,
or some combination thereof. In the illustrated embodiment,
each node can communicate with any other node via any
network using any network desired. Accordingly, unlike the
star network topology of FIG. 5, the overlapping networks
topology may communicate directly between nodes via any
network without using inter-network routing.

D. Fabric Network Connection to Services

In addition to communications between devices within the
home, a fabric (e.g., fabric 1000) may include services that
may be located physically near other devices in the fabric or
physically remote from such devices. The fabric connects to
these services through one or more service end points. FIG.
7 illustrates an embodiment of a service 1074 communicat-
ing with fabrics 1076, 1078, and 1080. The service 1074
may include various services that may be used by devices in
fabrics 1076, 1078, and/or 1080. For example, in some
embodiments, the service 1074 may be a time of day service
that supplies a time of day to devices, a weather service to
provide various weather data (e.g., outside temperature,
sunset, wind information, weather forecast, etc.), an echo
service that “pings” each device, data management services,
device management services, and/or other suitable services.
As illustrated, the service 1074 may include a server 1082
(e.g., web server) that stores/accesses relevant data and
passes the information through a service end point 1084 to
one or more end points 1086 in a fabric, such as fabric 1076.
Although the illustrated embodiment only includes three

US 9,432,464 B2

13

fabrics with a single server 1082, it should be appreciated
that the service 1074 may connect to any number of fabrics
and may include servers in addition to the server 1082 and/or
connections to additional services.

In certain embodiments, the service 1074 may also con-
nect to a consumer device 1088, such as a phone, tablet,
and/or computer. The consumer device 1088 may be used to
connect to the service 1074 via a fabric, such as fabric 1076,
an Internet connection, and/or some other suitable connec-
tion method. The consumer device 1088 may be used to
access data from one or more end points (e.g., electronic
devices) in a fabric either directly through the fabric or via
the service 1074. In other words, using the service 1074, the
consumer device 1088 may be used to access/manage
devices in a fabric remotely from the fabric.

E. Communication Between Devices in a Fabric

As discussed above, each electronic device or node may
communicate with any other node in the fabric, either
directly or indirectly depending upon fabric topology and
network connection types. Additionally, some devices (e.g.,
remote devices) may communicate through a service to
communicate with other devices in the fabric. FIG. 8 illus-
trates an embodiment of a communication 1090 between
two devices 1092 and 1094. The communication 1090 may
span one or more networks either directly or indirectly
through additional devices and/or services, as described
above. Additionally, the communication 1090 may occur
over an appropriate communication protocol, such as IPv6,
using one or more transport protocols. For example, in some
embodiments the communication 1090 may include using
the transmission control protocol (TCP) and/or the user
datagram protocol (UDP). In some embodiments, the device
1092 may transmit a first signal 1096 to the device 1094
using a connectionless protocol (e.g., UDP). In certain
embodiments, the device 1092 may communicate with the
device 1094 using a connection-oriented protocol (e.g.,
TCP). Although the illustrated communication 1090 is
depicted as a bi-directional connection, in some embodi-
ments, the communication 1090 may be a uni-directional
broadcast.

i. Unique Local Address

As discussed above, data transmitted within a fabric
received by a node may be redirected or passed through the
node to another node depending on the desired target for the
communication. In some embodiments, the transmission of
the data may be intended to be broadcast to all devices. In
such embodiments, the data may be retransmitted without
further processing to determine whether the data should be
passed along to another node. However, some data may be
directed to a specific endpoint. To enable addressed mes-
sages to be transmitted to desired endpoints, nodes may be
assigned identification information.

Each node may be assigned a set of link-local addresses
(LLA), one assigned to each network interface. These LLLAs
may be used to communicate with other nodes on the same
network. Additionally, the LLLAs may be used for various
communication procedures, such as IPv6 Neighbor Discov-
ery Protocol. In addition to LLAs, each node is assigned a
unique local address (ULA).

FIG. 9 illustrates an embodiment of a unique local address
(ULA) 1098 that may be used to address each node in the
fabric. In certain embodiments, the ULA 1098 may be
formatted as an IPv6 address format containing 128 bits
divided into a global ID 1100, a subnet ID 1102, and an
interface ID 1104. The global ID 1100 includes 40 bits and
the subnet ID 1102 includes 16 bits. The global ID 1100 and
subnet 1D 1102 together form a fabric ID 1103 for the fabric.

10

15

20

25

30

35

40

45

50

55

60

14

The fabric ID 1103 is a unique 64-bit identifier used to
identify a fabric. The fabric ID 1103 may be generated at
creation of the associated fabric using a pseudo-random
algorithm. For example, the pseudo-random algorithm may
1) obtain the current time of day in 64-bit NTP format, 2)
obtain the interface ID 1104 for the device, 3) concatenate
the time of day with the interface ID 1104 to create a key, 4)
compute and SHA-1 digest on the key resulting in 160 bits,
5) use the least significant 40 bits as the global ID 1100, and
6) concatenate the ULA and set the least significant bit to 1
to create the fabric ID 1103. In certain embodiments, once
the fabric ID 1103 is created with the fabric, the fabric ID
1103 remains until the fabric is dissolved.

The global ID 1100 identifies the fabric to which the node
belongs. The subnet ID 1102 identifies logical networks
within the fabric. The subnet ID 1102 may be assigned
monotonically starting at one with the addition of each new
logical network to the fabric. For example, a WiFi network
may be identified with a hex value of 0x01, and a later
connected 802.15.4 network may be identified with a hex
value of 0x02 continuing on incrementally upon the con-
nection of each new network to the fabric.

Finally, the ULA 1098 includes an interface 1D 1104 that
includes 64 bits. The interface ID 1104 may be assigned
using a globally-unique 64-bit identifier according to the
IEEE EUI-64 standard. For example, devices with IEEE 802
network interfaces may derive the interface ID 1104 using a
burned-in MAC address for the devices “primary interface.”
In some embodiments, the designation of which interface is
the primary interface may be determined arbitrarily. In other
embodiments, an interface type (e.g., WiFi) may be deemed
the primary interface, when present. If the MAC address for
the primary interface of a device is 48 bits rather than 64-bit,
the 48-bit MAC address may be converted to a EUI-64 value
via encapsulation (e.g., organizationally unique identifier
encapsulating). In consumer devices (e.g., phones or com-
puters), the interface ID 1104 may be assigned by the
consumer devices’ local operating systems.

ii. Routing Transmissions Between Logical Networks

As discussed above in relation to a star network topology,
inter-network routing may occur in communication between
two devices across logical networks. In some embodiments,
inter-network routing is based on the subnet ID 1102. Each
inter-networking node (e.g., node 1034 of FIG. 5) may
maintain a list of other routing nodes (e.g., node B 14 of F1G.
5) on the hub network 1020 and their respective attached
periphery networks (e.g., periphery network 1024 of FIG.
5). When a packet arrives addressed to a node other than the
routing node itself, the destination address (e.g., address for
node 1052 of FIG. 5) is compared to the list of network
prefixes and a routing node (e.g., node 1044) is selected that
is attached to the desired network (e.g., periphery network
1024). The packet is then forwarded to the selected routing
node. If multiple nodes (e.g., 1034 and 1036) are attached to
the same periphery network, routing nodes are selected in an
alternating fashion.

Additionally, inter-network routing nodes may regularly
transmit Neighbor Discovery Protocol (NDP) router adver-
tisement messages on the hub network to alert consumer
devices to the existence of the hub network and allow them
to acquire the subnet prefix. The router advertisements may
include one or more route information options to assist in
routing information in the fabric. For example, these route
information options may inform consumer devices of the
existence of the periphery networks and how to route
packets the periphery networks.

US 9,432,464 B2

15

In addition to, or in place of route information options,
routing nodes may act as proxies to provide a connection
between consumer devices and devices in periphery net-
works, such as the process 1105 as illustrated in FIG. 10. As
illustrated, the process 1105 includes each periphery net-
work device being assigned a virtual address on the hub
network by combining the subnet ID 1102 with the interface
1D 1104 for the device on the periphery network (block
1106). To proxy using the virtual addresses, routing nodes
maintain a list of all periphery nodes in the fabric that are
directly reachable via one of its interfaces (block 1108). The
routing nodes listen on the hub network for neighbor solici-
tation messages requesting the link address of a periphery
node using its virtual address (block 1110). Upon receiving
such a message, the routing node attempts to assign the
virtual address to its hub interface after a period of time
(block 1112). As part of the assignment, the routing node
performs duplicate address detection so as to block proxying
of the virtual address by more than one routing node. After
the assignment, the routing node responds to the neighbor
solicitation message and receives the packet (block 1114).
Upon receiving the packet, the routing node rewrites the
destination address to be the real address of the periphery
node (block 1116) and forwards the message to the appro-
priate interface (block 1118).

iii. Consumer Devices Connecting to a Fabric

To join a fabric, a consumer device may discover an
address of a node already in the fabric that the consumer
device wants to join. Additionally, if the consumer device
has been disconnected from a fabric for an extended period
of time may need to rediscover nodes on the network if the
fabric topology/layout has changed. To aid in discovery/
rediscovery, fabric devices on the hub network may publish
Domain Name System-Service Discovery (DNS-SD)
records via mDNS that advertise the presence of the fabric
and provide addresses to the consumer device

III. Data Transmitted in the Fabric

After creation of a fabric and address creation for the
nodes, data may be transmitted through the fabric. Data
passed through the fabric may be arranged in a format
common to all messages and/or common to specific types of
conversations in the fabric. In some embodiments, the
message format may enable one-to-one mapping to
JavaScript Object Notation (JSON) using a TLV serializa-
tion format discussed below. Additionally, although the
following data frames are described as including specific
sizes, it should be noted that lengths of the data fields in the
data frames may be varied to other suitable bit-lengths.

It should be understood that each of the following data
frames, profiles, and/or formats discussed below may be
stored in memory (e.g., memory of the device 10) prior to
and/or after transmission of a message. In other words,
although the data frame, profiles, and formats may be
generally discussed as transmissions of data, they may also
be physically stored (e.g., in a buffer) before, during, and/or
after transmission of the data frame, profiles, and/or formats.
Moreover, the following data frames, profiles, schemas,
and/or formats may be stored on a non-transitory, computer-
readable medium that allows an electronic device to access
the data frames, profiles, schemas, and/or formats. For
example, instructions for formatting the data frames, pro-
files, schemas, and/or formats may be stored in any suitable
computer-readable medium, such as in memory for the
device 10, memory of another device, a portable memory
device (e.g., compact disc, flash drive, etc.), or other suitable
physical device suitable for storing the data frames, profiles,
schemas, and/or formats.

25

30

40

45

50

55

16

A. Security

Along with data intended to be transferred, the fabric may
transfer the data with additional security measures such as
encryption, message integrity checks, and digital signatures.
In some embodiments, a level of security supported for a
device may vary according to physical security of the device
and/or capabilities of the device. In certain embodiments,
messages sent between nodes in the fabric may be encrypted
using the Advanced Encryption Standard (AES) block
cipher operating in counter mode (AES-CTR) with a 128-bit
key. As discussed below, each message contains a 32-bit
message id. The message id may be combined with a
sending nodes id to form a nonce for the AES-CTR algo-
rithm. The 32-bit counter enables 4 billion messages to be
encrypted and sent by each node before a new key is
negotiated.

In some embodiments, the fabric may insure message
integrity using a message authentication code, such as
HMAC-SHA-1, that may be included in each encrypted
message. In some embodiments, the message authentication
code may be generated using a 160-bit message integrity key
that is paired one-to-one with the encryption key. Addition-
ally, each node may check the message id of incoming
messages against a list of recently received ids maintained
on a node-by-node basis to block replay of the messages.

B. Tag Length Value (TLV) Formatting

To reduce power consumption, it is desirable to send at
least a portion of the data sent over the fabric that compactly
while enabling the data containers to flexibly represents data
that accommodates skipping data that is not recognized or
understood by skipping to the next location of data that is
understood within a serialization of the data. In certain
embodiments, tag-length-value (TLV) formatting may be
used to compactly and flexibly encode/decode data. By
storing at least a portion of the transmitted data in TLV, the
data may be compactly and flexibly stored/sent along with
low encode/decode and memory overhead, as discussed
below in reference to Table 7. In certain embodiments, TLV
may be used for some data as flexible, extensible data, but
other portions of data that is not extensible may be stored
and sent in an understood standard protocol data unit (PDU).

Data formatted in a TLV format may be encoded as TLV
elements of various types, such as primitive types and
container types. Primitive types include data values in
certain formats, such as integers or strings. For example, the
TLV format may encode: 1, 2, 3, 4, or 8 byte signed/
unsigned integers, UTF-8 strings, byte strings, single/
double-precision floating numbers (e.g., IEEE 754-1985
format), boolean, null, and other suitable data format types.
Container types include collections of elements that are then
sub-classified as container or primitive types. Container
types may be classified into various categories, such as
dictionaries, arrays, paths or other suitable types for group-
ing TLV elements, known as members. A dictionary is a
collection of members each having distinct definitions and
unique tags within the dictionary. An array is an ordered
collection of members with implied definitions or no distinct
definitions. A path is an ordered collection of members that
described how to traverse a tree of TLV elements.

As illustrated in FIG. 11, an embodiment of a TLV packet
1120 includes three data fields: a tag field 1122, a length field
1124, and a value field 1126. Although the illustrated fields
1122, 1124, and 1126 are illustrated as approximately
equivalent in size, the size of each field may be variable and
vary in size in relation to each other. In other embodiments,
the TLV packet 1120 may further include a control byte
before the tag field 1122.

US 9,432,464 B2

17

In embodiments having the control byte, the control byte
may be sub-divided into an element type field and a tag
control field. In some embodiments, the element type field
includes 5 lower bits of the control byte and the tag control
field occupies the upper 3 bits. The element type field
indicates the TLV element’s type as well as the how the
length field 1124 and value field 1126 are encoded. In certain
embodiments, the element type field also encodes Boolean
values and/or null values for the TLV. For example, an
embodiment of an enumeration of element type field is
provided in Table 1 below.

TABLE 1

Example element type field values.

-~
=N
w
N
w
S}
—
=3

Signed Integer, 1 byte value
Signed Integer, 2 byte value
Signed Integer, 4 byte value
Signed Integer, 8 byte value
Unsigned Integer, 1 byte value
Unsigned Integer, 2 byte value
Unsigned Integer, 4 byte value
Unsigned Integer, 8 byte value
Boolean False

Boolean True

Floating Point Number, 4 byte
value

Floating Point Number, & byte
value

[N NN NoNoNeRoRoN N}
HEHE OO0 O0 0000
CoOO0ORRRR,OOOO
— OO R R OOR—= OO
O~ OROHORO~O

<
—_
<
—_
—_

0 1 1 0 0 UTF8-String, 1 byte length
0 1 1 0 1 UTF8-String, 2 byte length
0 1 1 1 0 UTF8-String, 4 byte length
0 1 1 1 1 UTF8-String, 8 byte length
1 0 0 0 0 ByteString, 1 byte length
1 0 0 0 1 ByteString, 2 byte length
1 0 0 1 0 ByteString, 4 byte length
1 0 0 1 1 ByteString, 8 byte length
1 0 1 0 0 Nul

1 0 1 0 1 Dictionary

1 0 1 1 0 Array

1 0 1 1 1 Path

1 1 0 0 O

End of Container

The tag control field indicates a form of the tag in the tag
field 1122 assigned to the TLV element (including a zero-
length tag). Examples, of tag control field values are pro-
vided in Table 2 below.

TABLE 2

Example values for tag control field.

7 6 5 4 3 2 1 0

0o 0 0 Anonymous, 0 bytes

0o 0 1 Context-specific Tag, 1 byte
o 1 0 Core Profile Tag, 2 bytes

o 1 1 Core Profile Tag, 4 bytes

1 0 0 Implicit Profile Tag, 2 bytes
1 0 1 Implicit Profile Tag, 4 bytes
1 1 0 Fully-qualified Tag, 6 bytes
1 1 1 Fully-qualified Tag, 8 bytes

In other words, in embodiments having a control byte, the
control byte may indicate a length of the tag.

In certain embodiments, the tag field 1122 may include
zero to eight bytes, such as eight, sixteen, thirty two, or sixty
four bits. In some embodiments, the tag of the tag field may
be classified as profile-specific tags or context-specific tags.
Profile-specific tags identify elements globally using a ven-
dor Id, a profile Id, and/or tag number as discussed below.
Context-specific tags identify TLV elements within a context

10

15

20

25

30

35

40

45

50

55

60

65

18

of a containing dictionary element and may include a
single-byte tag number. Since context-specific tags are
defined in context of their containers, a single context-
specific tag may have different interpretations when
included in different containers. In some embodiments, the
context may also be derived from nested containers.

In embodiments having the control byte, the tag length is
encoded in the tag control field and the tag field 1122
includes a possible three fields: a vendor Id field, a profile Id
field, and a tag number field. In the fully-qualified form, the
encoded tag field 1122 includes all three fields with the tag
number field including 16 or 32 bits determined by the tag
control field. In the implicit form, the tag includes only the
tag number, and the vendor Id and profile number are
inferred from the protocol context of the TLV element. The
core profile form includes profile-specific tags, as discussed
above. Context-specific tags are encoded as a single byte
conveying the tag number. Anonymous elements have zero-
length tag fields 1122.

In some embodiments without a control byte, two bits
may indicate a length of the tag field 1122, two bits may
indicate a length of the length field 1124, and four bits may
indicate a type of information stored in the value field 1126.
An example of possible encoding for the upper 8 bits for the
tag field is illustrated below in Table 3.

TABLE 3

Tag field of a TLV packet

Byte

Description

Tag is 8 bits

Tag is 16 bits

Tag is 32 bits

Tag is 64 bits

Length is 8 bits
Length is 16 bits
Length is 32 bits
Length is 64 bits
Boolean

Fixed 8-bit Unsigned
Fixed 8-bit Signed
Fixed 16-bit Unsigned
Fixed 16-bit Signed
Fixed 32-bit Unsigned
Fixed 32-bit Signed
Fixed 64-bit Unsigned
Fixed 64-bit Signed
32-bit Floating Point
64-bit Floating Point
UTF-8 String

Opaque Data
Container

e =R =R RN
~—~ 0000~ CODOC |
CoOr—~OOR OO0~ OO |
HOHOHOHOHO’-‘OHo‘

As illustrated in Table 3, the upper 8 bits of the tag field 1122
may be used to encode information about the tag field 1122,
length field 1124, and the value field 1126, such that the tag
field 112 may be used to determine length for the tag field
122 and the length fields 1124. Remaining bits in the tag
field 1122 may be made available for user-allocated and/or
user-assigned tag values.

The length field 1124 may include eight, sixteen, thirty
two, or sixty four bits as indicated by the tag field 1122 as
illustrated in Table 3 or the element field as illustrated in
Table 2. Moreover, the length field 1124 may include an
unsigned integer that represents a length of the encoded in
the value field 1126. In some embodiments, the length may
be selected by a device sending the TLV element. The value
field 1126 includes the payload data to be decoded, but

US 9,432,464 B2

19

interpretation of the value field 1126 may depend upon the
tag length fields, and/or control byte. For example, a TLV
packet without a control byte including an 8 bit tag is
illustrated in Table 4 below for illustration.

5
TABLE 4
Example of a TLV packet including an 8-bit tag
Tag Length Value Description 10
0x0d 0x24
0x09 0x04 0x42 95 00 00 74.5
0x09 0x04 0x42 98 66 66 76.2
0x09 0x04 0x42 94 99 9a 74.3
0x09 0x04 0x42 98 99 9a 76.3
0x09 0x04 0x42 95 33 33 74.6 15
0x09 0x04 0x42 98 33 33 76.1

As illustrated in Table 4, the first line indicates that the tag
field 1122 and the length field 1124 each have a length of 8
bits. Additionally, the tag field 1122 indicates that the tag 2°
type is for the first line is a container (e.g., the TLV packet).
The tag field 1124 for lines two through six indicate that
each entry in the TLV packet has a tag field 1122 and length
field 1124 consisting of 8 bits each. Additionally, the tag 5
field 1124 indicates that each entry in the TLV packet has a
value field 1126 that includes a 32-bit floating point. Each
entry in the value field 1126 corresponds to a floating
number that may be decoded using the corresponding tag
field 1122 and length field 1124 information. As illustrated |
in this example, each entry in the value field 1126 corre-
sponds to a temperature in Fahrenheit. As can be understood,
by storing data in a TLV packet as described above, data may
be transferred compactly while remaining flexible for vary-
ing lengths and information as may be used by different
devices in the fabric. Moreover, in some embodiments,
multi-byte integer fields may be transmitted in little-endian
order or big-endian order.

By transmitting TLV packets in using an order protocol
(e.g., little-endian) that may be used by sending/receiving
device formats (e.g., JSON), data transferred between nodes
may be transmitted in the order protocol used by at least one
of'the nodes (e.g., little endian). For example, if one or more
nodes include ARM or ix86 processors, transmissions
between the nodes may be transmitted using little-endian
byte ordering to reduce the use of byte reordering. By
reducing the inclusion of byte reordering, the TLV format
enable devices to communicate using less power than a
transmission that uses byte reordering on both ends of the
transmission. Furthermore, TLV formatting may be speci-
fied to provide a one-to-one translation between other data
storage techniques, such as JSON+ Extensible Markup Lan-
guage (XML). As an example, the TLV format may be used
to represent the following XML Property List:

55

<?xml version="1.0" encoding=“UTF-8"?>
<IDOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0/EN”
“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version="*1.0">
<dict>
<key>OfflineMode</key>
<false/>
<key>Network</key>
<dict>
<key>IPv4</key>
<dict>
<key>Method</key> 65
<string>dhep</string>

60

20

-continued

</dict>
<key>IPv6</key>
<dict>
<key>Method</key>
<string>auto</string>
</dict>
</dict>
<key>Technologies</key>
<dict>
<key>wifi</key>
<dict>
<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>wifi_18b4300008b027</key>
<dict>
<key>Enabled</key>
<true/>
</dict>
</dict>
<key>Services</key>
<array>
<string>wifl_18b4300008b027_3939382d33204 16
c70696e652054657 272616365</string>
</array>
</dict>
<key>802.15.4</key>
<dict>
<key>Enabled</key>
<true/>
<key>Devices</key>
<dict>
<key>802.15.4_18b43000000002fac4</key>
<dict>
<key>Enabled</key>
<true/>
</dict>
</dict>
<key>Services</key>
<array>

<string>802.15.4_18b43000000002fac4_3 939382d332041

6¢7069666520546572</string>
</array>
</diet>
</diet>
<key>Services</key>
<dict>

<key>wifi_18b4300008b027_3939382d3320416¢70696e6520546572

72616365</key>
<dict>
<key>Name</key>
<string>998-3 Alpine Terrace</string>
<key>SSID</key>
<data>3939382d3320416¢70696e652054657272616365
</data>
<key>Frequency</key>
<integer>2462</integer>
<key>AutoConnect</key>
<true/>
<key>Favorite</key>
<true/>
<key>Error</key>
<string/>
<key>Network</key>
<dict>
<key>IPv4</key>
<dict>
<key>DHCP</key>
<dict>
<key>LastAddress</key>
<data>0a02001e</data>
</dict>
</diet>
<key>IPv6</key>
<dict/>
</diet>
</diet>

<key>802.15.4_18b43000000002fac4_3939382d3320416c70696e

US 9,432,464 B2

-continued TABLE 5
6520546572</key> Example representation of the XMI Property List in TLV format
<diet> XML Key Tag Type Tag Number
<key>Name</key> 5
<string>998-3 Alpine Ter</string> OfflineMode Boolefm 1
1Pv4 Container 3
<key>EPANID</key> IPv6 Container 4
<data>3939382d3320416¢70696e6520546572</data> Method String 5
<key>Frequency</key> 0 Technologies Container 6
<integer>2412</integer> Wik Conta%ner 7
802.15.4 Container 8
<key>AutoConnect</key> Enabled Boolean 9
<true/> Devices Container 10
<key>Favorite</key> D String 11
<true/> s Services Coytainer 12
Name String 13
<key>Error</key> SSID Data 14
<string/> EPANID Data 15
<key>Network</key> Frequency 16-bit Unsigned 16
<dict/> AutoConnect Boolean 17
.lc 20 Favorite Boolean 18
</dict> Error String 19
</dict> DHCP String 20
<dict> LastAddress Data 21
) Device Container 22
<plist Service Container 23
25

As an example, the above property list may be represented
in tags of the above described TLV format (without a control
byte) according to Table 5 below.

Similarly, Table 6 illustrates an example of literal tag, length,
and value representations for the example XML Property
List.

TABLE 6

Example of literal values for tag, length, and value fields for XML Property List

Tag Length Value Description

0x40 01 0x01 0 OfflineMode

0Ox4d 02 0x14 Network

0x4d 03 0x07 Network.IPv4

0x4b 05 0x04 “dhep” Network.IPv4.Method

0x4d 04 0x07 Network.IPv6

0x4b 05 0x04 “auto” Network.IPv6.Method

0x4d 06 0xd6 Technologies

0x4d 07 0x65 Technologies.wifi

0x40 09 0x01 1 Technologies.wifi.Enabled

0x4d 0a 0x5e Technologies.wifi.Devices

0x4d 16 0x5b Technologies.wifi.Devices.Device.[0]

0x4b Ob 0x13 “wifi_18b43 . .. Technologies.wifi.Devices.Device.[0].ID

0x40 09 0x01 1 Technologies.wifi.Devices.Device.[0]. Enabled
0x4d Oc 0x3e Technologies.wifi.Devices.Device.[0].Services
0x0b 0x3c “wifi_18b43 . .. ” Technologies.wifi. Devices.Device.[0].Services.[0]
0x4d 08 0x6b Technologies.802.15.4

0x40 09 0x01 1 Technologies.802.15.4.Enabled

0x4d 0a 0x64 Technologies.802.15.4.Devices

Ox4d 16 0x61 Technologies.802.15.4.Devices.Device.[0]

0x4b Ob Oxla “802.15.4_18 . . . ”Technologies.802.15.4.Devices.Device.[0].ID

0x40 09 0x01 1 Technologies.802.15.4.Devices.Device.[0].Enabled
0x4d Oc 0x3d Technologies.802.15.4.Devices.Device.[0].Services
0x0b 0x3b “802.15.4_18 . . . ”Technologies.802.15.4.Devices.Device.[0].Services.[0]
0x4d Oc Oxcb Services

0x4d 17 0x75 Services.Service.[0]

0x4b Ob 0x13 “wifi_18b43 . .. Services.Service.[0].ID

Ox4b 0d 0x14 “998-3 Alp . . . ” Services.Service.[0].Name

Oxdc Of 0x28 3939382d ... Services.Service.[0].SSID

0x45 10 0x02 2462 Services.Service.[0].Frequency

0x40 11 0x01 1 Services.Service.[0].AutoConnect

0x40 12 0x01 1 Services.Service.[0].Favorite

0x4d 02 0x0d Services.Service.[0].Network

0x4d 03 0Ox0a Services.Service.[0].Network.IPv4

0x4d 14 0x07 Services.Service.[0].Network.JPv4. DHCP

0x45 15 0x04 0x0a02001e Services.Service.[0].Network.IPv4.LastAddress
0x4d 17 0x50 Services.Service.[1]

0x4b Ob Oxla “802.15.4_18 . . . ”Services.Service.[1].ID

Ox4c 0d 0x10 “998-3 Alp . .. ” Services.Service.[1].Nam

Ox4c Of 0x10 3939382d ... Services.Service.[1]. EPANID

US 9,432,464 B2

23
TABLE 6-continued

24

Example of literal values for tag, length, and value fields for XML Property List

Tag Length Value Description

0x45 10 0x02 2412 Services.Service.[1].Frequency
0x40 11 0x01 1 Services.Service.[1].AutoConnect
0x40 12 0x01 1 Services.Service.[1].Favorite

The TLV format enables reference of properties that may
also be enumerated with XML, but does so with a smaller
storage size. For example, Table 7 illustrates a comparison
of data sizes of the XML Property List, a corresponding

binary property list, and the TLV format.
TABLE 7
Comparison of the sizes of property list data sizes.
List Type Size in Bytes Percentage of XML Size
XML 2,199 —
Binary 730 -66.8%
TLV 450 -79.5%

By reducing the amount of data used to transfer data, the
TLV format enables the fabric 1000 transfer data to and/or
from devices having short duty cycles due to limited power
(e.g., battery supplied devices). In other words, the TLV
format allows flexibility of transmission while increasing
compactness of the data to be transmitted.

C. General Message Protocol

In addition to sending particular entries of varying sizes,
data may be transmitted within the fabric using a general
message protocol that may incorporate TLV formatting. An
embodiment of a general message protocol (GMP) 1128 is
illustrated in FIG. 12. In certain embodiments, the general
message protocol (GMP) 1128 may be used to transmit data
within the fabric. The GMP 1128 may be used to transmit
data via connectionless protocols (e.g., UDP) and/or con-
nection-oriented protocols (e.g., TCP). Accordingly, the
GMP 1128 may flexibly accommodate information that is
used in one protocol while ignoring such information when
using another protocol. Moreover, the GMP 1226 may
enable omission of fields that are not used in a specific
transmission. Data that may be omitted from one or more
GMP 1226 transfers is generally indicated using grey bor-
ders around the data units. In some embodiments, the
multi-byte integer fields may be transmitted in a little-endian
order or a big-endian order.

i. Packet Length

In some embodiments, the GMP 1128 may include a
Packet Length field 1130. In some embodiments, the Packet
Length field 1130 includes 2 bytes. A value in the Packet
Length field 1130 corresponds to an unsigned integer indi-
cating an overall length of the message in bytes, excluding
the Packet Length field 1130 itself. The Packet Length field
1130 may be present when the GMP 1128 is transmitted over
a TCP connection, but when the GMP 1128 is transmitted
over a UDP connection, the message length may be equal to
the payload length of the underlying UDP packet obviating
the Packet Length field 1130.

ii. Message Header

The GMP 1128 may also include a Message Header 1132
regardless of whether the GMP 1128 is transmitted using
TCP or UDP connections. In some embodiments, the Mes-
sage Header 1132 includes two bytes of data arranged in the

10

15

20

25

30

40

45

50

55

60

65

format illustrated in FIG. 13. As illustrated in FIG. 13, the
Message Header 1132 includes a Version field 1156. The
Version field 1156 corresponds to a version of the GMP 1128
that is used to encode the message. Accordingly, as the GMP
1128 is updated, new versions of the GMP 1128 may be
created, but each device in a fabric may be able to receive
a data packet in any version of GMP 1128 known to the
device. In addition to the Version field 1156, the Message
Header 1132 may include an S Flag field 1158 and a D Flag
1160. The S Flag 1158 is a single bit that indicates whether
a Source Node Id (discussed below) field is included in the
transmitted packet. Similarly, the D Flag 1160 is a single bit
that indicates whether a Destination Node Id (discussed
below) field is included in the transmitted packet.

The Message Header 1132 also includes an Encryption
Type field 1162. The Encryption Type field 1162 includes
four bits that specify which type of encryption/integrity
checking applied to the message, if any. For example, 0x0
may indicate that no encryption or message integrity check-
ing is included, but a decimal 0x1 may indicate that AES-
128-CTR encryption with HMAC-SHA-1 message integrity
checking is included.

Finally, the Message Header 1132 further includes a
Signature Type field 1164. The Signature Type field 1164
includes four bits that specify which type of digital signature
is applied to the message, if any. For example, 0x0 may
indicate that no digital signature is included in the message,
but 0x1 may indicate that the Elliptical Curve Digital
Signature Algorithm (ECDSA) with Prime256v1 elliptical
curve parameters is included in the message.

iii. Message Id

Returning to FIG. 12, the GMP 1128 also includes a
Message 1d field 1134 that may be included in a transmitted
message regardless of whether the message is sent using
TCP or UDP. The Message 1d field 1134 includes four bytes
that correspond to an unsigned integer value that uniquely
identifies the message from the perspective of the sending
node. In some embodiments, nodes may assign increasing
Message Id 1134 values to each message that they send
returning to zero after reaching 2°> messages.

iv. Source Node Id

In certain embodiments, the GMP 1128 may also include
a Source Node Id field 1136 that includes eight bytes. As
discussed above, the Source Node Id field 1136 may be
present in a message when the single-bit S Flag 1158 in the
Message Header 1132 is set to 1. In some embodiments, the
Source Node 1d field 1136 may contain the Interface 1D 1104
of the ULA 1098 or the entire ULA 1098. In some embodi-
ments, the bytes of the Source Node Id field 1136 are
transmitted in an ascending index-value order (e.g., EUI[0]
then EUI|[1] then EUI[2] then EUI[3], etc.).

v. Destination Node Id

The GMP 1128 may include a Destination Node Id field
1138 that includes eight bytes. The Destination Node Id field
1138 is similar to the Source Node 1Id field 1136, but the
Destination Node Id field 1138 corresponds to a destination
node for the message. The Destination Node Id field 1138

US 9,432,464 B2

25

may be present in a message when the single-bit D Flag 1160
in the Message Header 1132 is set to 1. Also similar to the
Source Node 1Id field 1136, in some embodiments, bytes of
the Destination Node 1d field 1138 may be transmitted in an
ascending index-value order (e.g., EUI[0] then EUI[1] then
EUI[2] then EUI[3], etc.).

vi. Key 1d

In some embodiments, the GMP 1128 may include a Key
1d field 1140. In certain embodiments, the Key Id field 1140
includes two bytes. The Key Id field 1140 includes an
unsigned integer value that identifies the encryption/mes-
sage integrity keys used to encrypt the message. The pres-
ence of the Key 1d field 1140 may be determined by the
value of Encryption Type field 1162 of the Message Header
1132. For example, in some embodiments, when the value
for the Encryption Type field 1162 of the Message Header
1132 is 0x0, the Key 1d field 1140 may be omitted from the
message.

An embodiment of the Key Id field 1140 is presented in
FIG. 14. In the illustrated embodiment, the Key Id field 1140
includes a Key Type field 1166 and a Key Number field
1168. In some embodiments, the Key Type field 1166
includes four bits. The Key Type field 1166 corresponds to
an unsigned integer value that identifies a type of encryp-
tion/message integrity used to encrypt the message. For
example, in some embodiments, if the Key Type field 1166
is 0x0, the fabric key is shared by all or most of the nodes
in the fabric. However, if the Key Type field 1166 is 0x1, the
fabric key is shared by a pair of nodes in the fabric.

The Key Id field 1140 also includes a Key Number field
1168 that includes twelve bits that correspond to an unsigned
integer value that identifies a particular key used to encrypt
the message out of a set of available keys, either shared or
fabric keys.

vii. Payload Length

In some embodiments, the GMP 1128 may include a
Payload Length field 1142. The Payload Length field 1142,
when present, may include two bytes. The Payload Length
field 1142 corresponds to an unsigned integer value that
indicates a size in bytes of the Application Payload field. The
Payload Length field 1142 may be present when the message
is encrypted using an algorithm that uses message padding,
as described below in relation to the Padding field.

viii. Initialization Vector

In some embodiments, the GMP 1128 may also include an
Initialization Vector (IV) field 1144. The IV field 1144, when
present, includes a variable number of bytes of data. The IV
field 1144 contains cryptographic IV values used to encrypt
the message. The IV field 1144 may be used when the
message is encrypted with an algorithm that uses an IV. The
length of the 1V field 1144 may be derived by the type of
encryption used to encrypt the message.

ix. Application Payload

The GMP 1128 includes an Application Payload field
1146. The Application Payload field 1146 includes a variable
number of bytes. The Application Payload field 1146
includes application data conveyed in the message. The
length of the Application Payload field 1146 may be deter-
mined from the Payload Length field 1142, when present. If
the Payload Length field 1142 is not present, the length of
the Application Payload field 1146 may be determined by
subtracting the length of all other fields from the overall
length of the message and/or data values included within the
Application Payload 1146 (e.g., TLV).

An embodiment of the Application Payload field 1146 is
illustrated in FIG. 15. The Application Payload field 1146
includes an APVersion field 1170. In some embodiments, the

20

25

35

40

45

50

26

APVersion field 1170 includes eight bits that indicate what
version of fabric software is supported by the sending
device. The Application Payload field 1146 also includes a
Message Type field 1172. The Message Type field 1172 may
include eight bits that correspond to a message operation
code that indicates the type of message being sent within a
profile. For example, in a software update profile, a 0x00
may indicate that the message being sent is an image
announce. The Application Payload field 1146 further
includes an Exchange Id field 1174 that includes sixteen bits
that corresponds to an exchange identifier that is unique to
the sending node for the transaction.

In addition, the Application Payload field 1146 includes a
Profile Id field 1176. The Profile Id 1176 indicates a “theme
of discussion” used to indicate what type of communication
occurs in the message. The Profile Id 1176 may correspond
to one or more profiles that a device may be capable of
communicating. For example, the Profile I1d 1176 may
indicate that the message relates to a core profile, a software
update profile, a status update profile, a data management
profile, a climate and comfort profile, a security profile, a
safety profile, and/or other suitable profile types. Each
device on the fabric may include a list of profiles which are
relevant to the device and in which the device is capable of
“participating in the discussion.” For example, many devices
in a fabric may include the core profile, the software update
profile, the status update profile, and the data management
profile, but only some devices would include the climate and
comfort profile. The APVersion field 1170, Message Type
field 1172, the Exchange Id field, the Profile I1d field 1176,
and the Profile-Specific Header field 1176, if present, may be
referred to in combination as the “Application Header.”

In some embodiments, an indication of the Profile 1d via
the Profile Id field 1176 may provide sufficient information
to provide a schema for data transmitted for the profile.
However, in some embodiments, additional information
may be used to determine further guidance for decoding the
Application Payload field 1146. In such embodiments, the
Application Payload field 1146 may include a Profile-
Specific Header field 1178. Some profiles may not use the
Profile-Specific Header field 1178 thereby enabling the
Application Payload field 1146 to omit the Profile-Specific
Header field 1178. Upon determination of a schema from the
Profile Id field 1176 and/or the Profile-Specific Header field
1178, data may be encoded/decoded in the Application
Payload sub-field 1180. The Application Payload sub-field
1180 includes the core application data to be transmitted
between devices and/or services to be stored, rebroadcast,
and/or acted upon by the receiving device/service.

X. Message Integrity Check

Returning to FIG. 12, in some embodiments, the GMP
1128 may also include a Message Integrity Check (MIC)
field 1148. The MIC field 1148, when present, includes a
variable length of bytes of data containing a MIC for the
message. The length and byte order of the field depends
upon the integrity check algorithm in use. For example, if
the message is checked for message integrity using HMAC-
SHA-1, the MIC field 1148 includes twenty bytes in big-
endian order. Furthermore, the presence of the MIC field
1148 may be determined by whether the Encryption Type
field 1162 of the Message Header 1132 includes any value
other than 0x0.

xi. Padding

The GMP 1128 may also include a Padding field 1150.
The Padding field 1150, when present, includes a sequence
of bytes representing a cryptographic padding added to the
message to make the encrypted portion of the message

US 9,432,464 B2

27
evenly divisible by the encryption block size. The presence
of the Padding field 1150 may be determined by whether the
type of encryption algorithm (e.g., block ciphers in cipher-
block chaining mode) indicated by the Encryption Type field
1162 in the Message Header 1132 uses cryptographic pad-
ding.

xii. Encryption

The Application Payload field 1146, the MIC field 1148,
and the Padding field 1150 together form an Encryption
block 1152. The Encryption block 1152 includes the portions
of the message that are encrypted when the Encryption Type
field 1162 in the Message Header 1132 is any value other
than 0x0.

xiil. Message Signature

The GMP 1128 may also include a Message Signature
field 1154. The Message Signature field 1154, when present,
includes a sequence of bytes of variable length that contains
a cryptographic signature of the message. The length and the
contents of the Message Signature field may be determined
according to the type of signature algorithm in use and
indicated by the Signature Type field 1164 of the Message
Header 1132. For example, if ECDSA using the Prime256v1
elliptical curve parameters is the algorithm in use, the
Message Signature field 1154 may include two thirty-two bit
integers encoded in little-endian order.

IV. Profiles and Protocols

As discussed above, one or more schemas of information
may be selected upon desired general discussion type for the
message. A profile may consist of one or more schemas. For
example, one set of schemas of information may be used to
encode/decode data in the Application Payload sub-field
1180 when one profile is indicated in the Profile 1d field 1176
of the Application Payload 1146. However, a different set of
schemas may be used to encode/decode data in the Appli-
cation Payload sub-field 1180 when a different profile is
indicated in the Profile Id field 1176 of the Application
Payload 1146.

FIG. 16 illustrates a schematic view of a variety of
profiles that may be used in various messages. For example,
one or more profile schemas may be stored in a profile
library 300 that may be used by the devices to encode or
decode messages based on a profile ID. The profile library
300 may organize the profiles into groups. For example, an
application- and vendor-specific profile group 302 of pro-
files may be application- and vendor-specific profiles, and a
provisioning group 304 of profiles may profiles used to
provision networks, services, and/or fabrics. The applica-
tion- and vendor-specific profile group 302 may include a
software update profile 306, a locale profile 308, a time
profile 310, a sensor profile 312, an access control profile
314, an alarm profile 316, and one or more vendor unique
profiles 318. The software update profile 306 may be used by
the devices to update software within the devices. The locale
profile 308 may be used to specify a location and/or lan-
guage set as the active locale for the device. The alarm
profile 316 may be used to send, read, and propagate alarms.

The profiles library 300 may also include a device control
profile 320, a network provisioning profile 322, a fabric
provisioning profile 324, and a service provisioning profile
326. The device control profile 320 allows one device to
request that another device exercise a specified device
control (e.g., arm failsafe, etc.) capability. The network
provisioning profile 322 enables a device to be added to a
new logical network (e.g., WiFi or 802.15.4). The fabric
provisioning profile 324 allows the devices to join a pre-

10

15

20

25

30

35

40

45

50

55

60

65

28

existing fabric or create a new fabric. The service provi-
sioning profile 326 enables the devices to be paired to a
service.

The profiles library 300 may also include a strings profile
328, a device description profile 330, a device profile 332,
device power extended profile 334, a device power profile
336, a device connectivity extended profile 338, a device
connectivity profile 340, a service directory profile 342, a
data management profile 344, an echo profile 346, a security
profile 348, and a core profile 350. The device description
profile 330 may be used by a device to identify one or more
other devices. The service directory profile 342 enables a
device to communicate with a service. The data management
profile 344 enables devices to view and/or track data stored
in another device. The echo profile 346 enables a device to
determine whether the device is connected to a target device
and the latency in the connection. The security profile 348
enables the devices to communicate securely.

The core profile 350 includes a status reporting profile
352 that enables devices to report successes and failures of
requested actions. Additionally, in certain embodiments,
each device may include a set of methods used to process
profiles. For example, a core protocol may include the
following profiles: GetProfiles, GetSchema, GetSchemas,
GetProperty, GetProperties, SetProperty, SetProperties,
RemoveProperty, RemoveProperties, RequestEcho, Notify-
PropertyChanged, and/or NotifyPropertiesChanged. The
Get Profiles method may return an array of profiles sup-
ported by a queried node. The GetSchema and GetSchemas
methods may respectively return one or all schemas for a
specific profile. GetProperty and GetProperties may respec-
tively return a value or all value pairs for a profile schema.
SetProperty and SetProperties may respectively set single or
multiple values for a profile schema. RemoveProperty and
RemoveProperties may respectively attempt to remove a
single or multiple values from a profile schema. Request-
Echo may send an arbitrary data payload to a specified node
which the node returns unmodified. NotifyPropertyChange
and NotifyPropertiesChanged may respectively issue a noti-
fication if a single/multiple value pairs have changed for a
profile schema.

To aid in understanding profiles and schemas, a non-
exclusive list of profiles and schemas are provided below for
illustrative purposes.

A. Status Reporting

A status reporting schema is presented as the status
reporting frame 1182 in FIG. 17. The status reporting
schema may be a separate profile or may be included in one
or more profiles (e.g., a core profile). In certain embodi-
ments, the status reporting frame 1182 includes a profile
field 1184, a status code field 1186, a next status field 1188,
and may include an additional status info field 1190.

i. Profile Field

In some embodiments, the profile field 1184 includes four
bytes of data that defines the profile under which the
information in the present status report is to be interpreted.
An embodiment of the profile field 1184 is illustrated in FI1G.
18 with two sub-fields. In the illustrated embodiment, the
profile field 1184 includes a profile Id sub-field 1192 that
includes sixteen bits that corresponds to a vendor-specific
identifier for the profile under which the value of the status
code field 1186 is defined. The profile field 1184 may also
includes a vendor Id sub-field 1194 that includes sixteen bits
that identifies a vendor providing the profile identified in the
profile Id sub-field 1192.

US 9,432,464 B2

29

ii. Status Code

In certain embodiments, the status code field 1186
includes sixteen bits that encode the status that is being
reported. The values in the status code field 1186 are
interpreted in relation to values encoded in the vendor Id
sub-field 1192 and the profile Id sub-field 1194 provided in
the profile field 1184. Additionally, in some embodiments,
the status code space may be divided into four groups, as
indicated in Table 8 below.

TABLE 8

Status Code Range Table

10

30

i. General Application Headers for the Application Pay-
load

In order to be recognized and handled properly, software
update profile frames may be identified within the Applica-
tion Payload field 1146 of the GMP 1128. In some embodi-
ments, all software update profile frames may use a common
Profile 1d 1176, such as 0x0000000C. Additionally, software
update profile frames may include a Message Type field
1172 that indicates additional information and may chosen
according to Table 9 below and the type of message being
sent.

TABLE 9

Range Name Description

0x0000 . . .
0x0011 . ..

0x0010
0x0020

success
client
error

A request was successfully processed.
An error has or may have occurred on
the client-side of a client/server
exchange. For example, the client has
made a badly-formed request.

An error has or may have occurred on
the server side of a client/server
exchange. For example, the server has
failed to process a client request to

an operating system error.

Additional processing will be used,
such as redirection, to complete a
particular exchange, but no errors yet.

0x0021 . .. 0x0030 server

€rror

0x0031 . .. 0x0040 continue/

redirect

Although Table 8 identifies general status code ranges that
may be used separately assigned and used for each specific
profile Id, in some embodiments, some status codes may be
common to each of the profiles. For example, these profiles
may be identified using a common profile (e.g., core profile)
identifier, such as 0x00000000.

iii. Next Status

In some embodiments, the next status code field 1188
includes eight bits. The next status code field 1188 indicates
whether there is following status information after the
currently reported status. If following status information is
to be included, the next status code field 1188 indicates what
type of status information is to be included. In some embodi-
ments, the next status code field 1188 may always be
included, thereby potentially increasing the size of the
message. However, by providing an opportunity to chain
status information together, the potential for overall reduc-
tion of data sent may be reduced. If the next status field 1186
is 0x00, no following status information field 1190 is
included. However, non-zero values may indicate that data
may be included and indicate the form in which the data is
included (e.g., in a TLV packet).

iv. Additional Status Info

When the next status code field 1188 is non-zero, the
additional status info field 1190 is included in the message.
If present, the status item field may contain status in a form
that may be determined by the value of the preceding status
type field (e.g., TLV format)

B. Software Update

The software update profile or protocol is a set of schemas
and a client/server protocol that enables clients to be made
aware of or seek information about the presence of software
that they may download and install. Using the software
update protocol, a software image may be provided to the
profile client in a format known to the client. The subsequent
processing of the software image may be generic, device-
specific, or vendor-specific and determined by the software
update protocol and the devices.

15

20

25

30

35

40

45

50

55

60

65

Software update profile message types

Type Message

0x00 image announce

0x01 image query

0x02 image query
response

0x03 download notify

0x04 notify response

0x05 update notify

0x06 . .. Oxff reserved

Additionally, as described below, the software update
sequence may be initiated by a server sending the update as
an image announce or a client receiving the update as an
image query. In either embodiment, an Exchange 1d 1174
from the initiating event is used for all messages used in
relation to the software update.

ii. Protocol Sequence

FIG. 19 illustrates an embodiment of a protocol sequence
1196 for a software update between a software update client
1198 and a software update server 1200. In certain embodi-
ments, any device in the fabric may be the software update
client 1198 or the software update server 1200. Certain
embodiments of the protocol sequence 1196 may include
additional steps, such as those illustrated as dashed lines that
may be omitted in some software update transmissions.

1. Service Discovery

In some embodiments, the protocol sequence 1196 begins
with a software update profile server announcing a presence
of the update. However, in other embodiments, such as the
illustrated embodiment, the protocol sequence 1196 begins
with a service discovery 1202, as discussed above.

2. Image Announce

In some embodiments, an image announce message 1204
may be multicast or unicast by the software update server
1200. The image announce message 1204 informs devices in
the fabric that the server 1200 has a software update to offer.
If the update is applicable to the client 1198, upon receipt of
the image announce message 1204, the software update
client 1198 responds with an image query message 1206. In
certain embodiments, the image announce message 1204
may not be included in the protocol sequence 1196. Instead,
in such embodiments, the software update client 1198 may
use a polling schedule to determine when to send the image
query message 1206.

3. Image Query

In certain embodiments, the image query message 1206
may be unicast from the software update client 1198 either
in response to an image announce message 1204 or accord-
ing to a polling schedule, as discussed above. The image
query message 1206 includes information from the client
1198 about itself. An embodiment of a frame of the image
query message 1206 is illustrated in FIG. 20. As illustrated
in FIG. 20, certain embodiments of the image query message
1206 may include a frame control field 1218, a product

US 9,432,464 B2

31

specification field 1220, a vendor specific data field 1222, a
version specification field 1224, a locale specification field
1226, an integrity type supported field 1228, and an update
schemes supported field 1230.

a. Frame Control

The frame control field 1218 includes 1 byte and indicates
various information about the image query message 1204.
An example of the frame control field 128 is illustrated in
FIG. 21. As illustrated, the frame control field 1218 may
include three sub-fields: vendor specific flag 1232, locale
specification flag 1234, and a reserved field S3. The vendor
specific flag 1232 indicates whether the vendor specific data
field 1222 is included in the message image query message.
For example, when the vendor specific flag 1232 is 0 no
vendor specific data field 1222 may be present in the image
query message, but when the vendor specific flag 1232 is 1
the vendor specific data field 1222 may be present in the
image query message. Similarly, a 1 value in the locale
specification flag 1234 indicates that a locale specification
field 1226 is present in the image query message, and a 0
value indicates that the locale specification field 1226 in not
present in the image query message.

b. Product Specification

The product specification field 1220 is a six byte field. An
embodiment of the product specification field 1220 is illus-
trated in FIG. 22. As illustrated, the product specification
field 1220 may include three sub-fields: a vendor Id field
1236, a product Id field 1238, and a product revision field
1240. The vendor Id field 1236 includes sixteen bits that
indicate a vendor for the software update client 1198. The
product Id field 1238 includes sixteen bits that indicate the
device product that is sending the image query message
1206 as the software update client 1198. The product revi-
sion field 1240 includes sixteen bits that indicate a revision
attribute of the software update client 1198.

¢. Vendor Specific Data

The vendor specific data field 1222, when present in the
image query message 1206, has a length of a variable
number of bytes. The presence of the vendor specific data
field 1222 may be determined from the vendor specific flag
1232 of the frame control field 1218. When present, the
vendor specific data field 1222 encodes vendor specific
information about the software update client 1198 in a TLV
format, as described above.

d. Version Specification

An embodiment of the version specification field 1224 is
illustrated in FIG. 23. The version specification field 1224
includes a variable number of bytes sub-divided into two
sub-fields: a version length field 1242 and a version string
field 1244. The version length field 1242 includes eight bits
that indicate a length of the version string field 1244. The
version string field 1244 is variable in length and determined
by the version length field 1242. In some embodiments, the
version string field 1244 may be capped at 255 UTF-8
characters in length. The value encoded in the version string
field 1244 indicates a software version attribute for the
software update client 1198.

e. Locale Specification

In certain embodiments, the locale specification field
1226 may be included in the image query message 1206
when the locale specification flag 1234 of the frame control
1218 is 1. An embodiment of the locale specification field
1226 is illustrated in FIG. 24. The illustrated embodiment of
the locale specification field 1226 includes a variable num-
ber of bytes divided into two sub-fields: a locale string
length field 1246 and a locale string field 1248. The locale
string length field 1246 includes eight bits that indicate a

20

30

35

40

45

32

length of the locale string field 1248. The locale string field
1248 of the locale specification field 1226 may be variable
in length and contain a string of UTF-8 characters encoding
a local description based on Portable Operating System
Interface (POSIX) locale codes. The standard format for
POSIX locale codes is [language|_territory][.codeset]
[@modifier]] For example, the POSIX representation for
Australian English is en_ AU.UTFS.

f. Integrity Types Supported

An embodiment of the integrity types field 1228 is
illustrated in FIG. 25. The integrity types supported field
1228 includes two to four bytes of data divided into two
sub-fields: a type list length field 1250 and an integrity type
list field 1252. The type list length field 1250 includes eight
bits that indicate the length in bytes of the integrity type list
field 1252. The integrity type list field 1252 indicates the
value of the software update integrity type attribute of the
software update client 1198. In some embodiments, the
integrity type may be derived from Table 10 below.

TABLE 10

Example integrity types

Value Integrity Type
0x00 SHA-160
0x01 SHA-256
0x02 SHA-512

The integrity type list field 1252 may contain at least one
element from Table 10 or other additional values not
included.

g. Update Schemes Supported

An embodiment of the schemes supported field 1230 is
illustrated in FIG. 26. The schemes supported field 1230
includes a variable number of bytes divided into two sub-
fields: a scheme list length field 1254 and an update scheme
list field 1256. The scheme list length field 1254 includes
eight bits that indicate a length of the update scheme list field
in bytes. The update scheme list field 1256 of the update
schemes supported field 1222 is variable in length deter-
mined by the scheme list length field 1254. The update
scheme list field 1256 represents an update schemes attri-
butes of the software update profile of the software update
client 1198. An embodiment of example values is shown in
Table 11 below.

TABLE 11

Example update schemes

Value Update Scheme

0x00 HTTP

0x01 HTTPS

0x02 SFTP

0x03 Fabric-specific File Transfer Protocol

(e.g., Bulk Data Transfer discussed
below)

Upon receiving the image query message 1206, the software
update server 1200 uses the transmitted information to
determine whether the software update server 1200 has an
update for the software update client 1198 and how best to
deliver the update to the software update client 1198.

4. Image Query Response

Returning to FIG. 19, after the software update server
1200 receives the image query message 1206 from the
software update client 1198, the software update server 1200

US 9,432,464 B2

33

responds with an image query response 1208. The image
query response 1208 includes either information detailing
why an update image is not available to the software update
client 1198 or information about the available image update
to enable to software update client 1198 to download and
install the update.

An embodiment of a frame of the image query response
1208 is illustrated in FIG. 27. As illustrated, the image query
response 1208 includes five possible sub-fields: a query
status field 1258, a uniform resource identifier (URI) field
1260, an integrity specification field 1262, an update scheme
field 1264, and an update options field 1266.

a. Query Status

The query status field 1258 includes a variable number of
bytes and contains status reporting formatted data, as dis-
cussed above in reference to status reporting. For example,
the query status field 1258 may include image query
response status codes, such as those illustrated below in
Table 12.

TABLE 12

Example image query response status codes

10

15

20

34

d. Update Scheme

The update scheme field 1264 includes eight bits and is
present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. If present, the update
scheme field 1264 indicates a scheme attribute for the
software update image being presented to the software
update server 1198.

e. Update Options

The update options field 1266 includes eight bits and is
present when the query status field 1258 indicates that an
update is available from the software update server 1198 to
the software update client 1198. The update options field
1266 may be sub-divided as illustrated in FIG. 30. As
illustrated, the update options field 1266 includes four
sub-fields: an update priority field 1276, an update condition
field 1278, a report status flag 1280, and a reserved field
1282. In some embodiments, the update priority field 1276
includes two bits. The update priority field 1276 indicates a
priority attribute of the update and may be determined using
values such as those illustrated in Table 13 below.

TABLE 13

inti 25
Profile Code Description Example update priority values
0x00000000 0x0000 The server has processed the image query -
message 1206 and has an update for the soft- Value Description
gpﬁzte client 1198 00 Normal - update during a period of low network traffic
0x0000000C 0x0001 The server has processed the image query 30 o1 Critical - update as quickly as possible
message 1206, but the server does not have an
update for the software update client 1198. I . .
0x00000000 0x0010 The server could not process the request The update Condlt}on field ,1,278 includes three bits ,that may
because be used to determine conditional factors to determine when
of improper form for the request. or if to update. For example, values in the update condition
0x00000000 0x0020 Th‘? server could not process the request due to 35 field 1278 may be decoded using the Table 14 below.
an internal error
TABLE 14
b. URI

The URI field 1260 includes a variable number of bytes.
The presence of the URI field 1260 may be determined by
the query status field 1258. If the query status field 1258
indicates that an update is available, the URI field 1260 may
be included. An embodiment of the URI field 1260 is
illustrated in FIG. 28. The URI field 1260 includes two
sub-fields: a URI length field 1268 and a URI string field
1270. The URI length field 1268 includes sixteen bits that
indicates the length of the URI string field 1270 in UTF-8
characters. The URI string field 1270 and indicates the URI
attribute of the software image update being presented, such
that the software update client 1198 may be able to locate,
download, and install a software image update, when pres-
ent.

c. Integrity Specification

The integrity specification field 1262 may variable in
length and present when the query status field 1258 indicates
that an update is available from the software update server
1198 to the software update client 1198. An embodiment of
the integrity specification field 1262 is illustrated in FIG. 29.
As illustrated, the integrity specification field 1262 includes
two sub-fields: an integrity type field 1272 and an integrity
value field 1274. The integrity type field 1272 includes eight
bits that indicates an integrity type attribute for the software
image update and may be populated using a list similar to
that illustrated in Table 10 above. The integrity value field
1274 includes the integrity value that is used to verify that
the image update message has maintained integrity during
the transmission.

40

45

50

55

60

65

Example update conditions

Value Decription
0 Update without conditions
1 Update if the version of the software running on the update
client software does not match the update version.
2 Update if the version of the software running on the update
client software is older than the update version.
3 Update if the user opts into an update with a user interface

The report status flag 1280 is a single bit that indicates
whether the software update client 1198 should respond with
a download notify message 1210. If the report status flag
1280 is set to 1 the software update server 1198 is requesting
a download notify message 1210 to be sent after the software
update is downloaded by the software update client 1200.

If the image query response 1208 indicates that an update
is available. The software update client 1198 downloads
1210 the update using the information included in the image
query response 1208 at a time indicated in the image query
response 1208.

5. Download Notify

After the update download 1210 is successfully com-
pleted or failed and the report status flag 1280 value is 1, the
software update client 1198 may respond with the download
notify message 1212. The download notify message 1210
may be formatted in accordance with the status reporting
format discussed above. An example of status codes used in
the download notify message 1212 is illustrated in Table 15
below.

US 9,432,464 B2

35
TABLE 15

Example download notify status codes

Profile Code Description

0x00000000 0x0000 The download has been completed,
and integrity verified

0x0000000C 0x0020 The download could not be
completed due to faulty download
instructions.

0x0000000C 0x0021 The image query response
message 1208 appears proper, but
the download or integrity
verification failed.

0x0000000C 0x0022 The integrity of the download could

not be verified.

In addition to the status reporting described above, the
download notify message 1208 may include additional sta-
tus information that may be relevant to the download and/or
failure to download.

6. Notify Response

The software update server 1200 may respond with a
notify response message 1214 in response to the download
notify message 1212 or an update notify message 1216. The
notify response message 1214 may include the status report-
ing format, as described above. For example, the notify
response message 1214 may include status codes as enu-
merated in Table 16 below.

TABLE 16

Example notify response status codes

Profile Code Description

0x00000000 0x0030 Continue - the notification is acknowledged,
but the update has not completed, such as
download notify message 1214 received but
update notify message 1216 has not.

0x00000000 0x0000 Success - the notification is acknowledged,
and the update has completed.

0x0000000C 0x0023 Abort - the notification is acknowledged,
but the server cannot continue the update.

0x0000000C 0x0031 Retry query - the notification is ack-

nowledged, and the software update client
1198 is directed to retry the update by
submitting another image query message 1206.

In addition to the status reporting described above, the notify
response message 1214 may include additional status infor-
mation that may be relevant to the download, update, and/or
failure to download/update the software update.

7. Update Notify

After the update is successfully completed or failed and
the report status flag 1280 value is 1, the software update
client 1198 may respond with the update notify message
1216. The update notify message 1216 may use the status
reporting format described above. For example, the update
notify message 1216 may include status codes as enumer-
ated in Table 17 below.

TABLE 17
Example update notify status codes
Profile Code Description
0x00000000 0x0000 Success - the update has been completed.
0x0000000C 0x0010 Client error - the update failed due to a

problem in the software update client 1198.

10

15

20

25

30

45

50

55

60

65

36

In addition to the status reporting described above, the
update notify message 1216 may include additional status
information that may be relevant to the update and/or failure
to update.

C. Bulk Transfer

In some embodiments, it may be desirable to transfer bulk
data files (e.g., sensor data, logs, or update images) between
nodes/services in the fabric 1000. To enable transfer of bulk
data, a separate profile or protocol may be incorporated into
one or more profiles and made available to the nodes/
services in the nodes. The bulk data transfer protocol may
model data files as collections of data with metadata attach-
ments. In certain embodiments, the data may be opaque, but
the metadata may be used to determine whether to proceed
with a requested file transfer.

Devices participating in a bulk transfer may be generally
divided according to the bulk transfer communication and
event creation. As illustrated in FIG. 31, each communica-
tion 1400 in a bulk transfer includes a sender 1402 that is a
node/service that sends the bulk data 1404 to a receiver 1406
that is a node/service that receives the bulk data 1404. In
some embodiments, the receiver may send status informa-
tion 1408 to the sender 1402 indicating a status of the bulk
transfer. Additionally, a bulk transfer event may be initiated
by either the sender 1402 (e.g., upload) or the receiver 1406
(e.g., download) as the initiator. A node/service that
responds to the initiator may be referred to as the responder
in the bulk data transfer.

Bulk data transfer may occur using either synchronous or
asynchronous modes. The mode in which the data is trans-
ferred may be determined using a variety of factors, such as
the underlying protocol (e.g., UDP or TCP) on which the
bulk data is sent. In connectionless protocols (e.g., UDP),
bulk data may be transferred using a synchronous mode that
allows one of the nodes/services (“the driver”) to control a
rate at which the transfer proceeds. In certain embodiments,
after each message in a synchronous mode bulk data trans-
fer, an acknowledgment may be sent before sending the next
message in the bulk data transfer. The driver may be the
sender 1402 or the receiver 1406. In some embodiments, the
driver may toggle between an online state and an offline
mode while sending messages to advance the transfer when
in the online state. In bulk data transfers using connection-
oriented protocols (e.g., TCP), bulk data may be transferred
using an asynchronous mode that does not use an acknowl-
edgment before sending successive messages or a single
driver.

Regardless of whether the bulk data transfer is performed
using a synchronous or asynchronous mode, a type of
message may be determined using a Message Type 1172 in
the Application Payload 1146 according the Profile 1d 1176
in the Application Payload. Table 18 includes an example of
message types that may be used in relation to a bulk data
transfer profile value in the Profile 1d 1176.

TABLE 18

Example of profile message types for bulk data transfer profiles

Type Message

0x01 snapshot request

0x02 watch request

0x03 periodic update request
0x04 refresh update

0x05 cancel view update
0x06 view response

0x07 explicit update request

US 9,432,464 B2

37
TABLE 18-continued

Example of profile message types for bulk data transfer profiles

Type Message
0x08 view update request
0x09 Block EOF
0x0A Ack
0x0B Block EOF
0x0C Error
i. SendInit

An embodiment of a SendInit message 1420 is illustrated
in FIG. 32. The SendInit message 1420 may include seven
fields: a transfer control field 1422, a range control field
1424, a file designator length field 1426, a proposed max
block size field 1428, a start offset field 1430, length field
1432, and a file designator field 1434.

The transfer control field 1422 includes a byte of data
illustrated in FIG. 33. The transfer control field includes at
least four fields: an Asynch flag 1450, an RDrive flag 1452,
an SDrive flag 1454, and a version field 1456. The Asynch
flag 1450 indicates whether the proposed transfer may be
performed using a synchronous or an asynchronous mode.
The RDrive flag 1452 and the SDrive flag 1454 each
respectively indicates whether the receiver 1406 is capable
of transferring data with the receiver 1402 or the sender
1408 driving a synchronous mode transfer.

The range control field 1424 includes a byte of data such
as the range control field 1424 illustrated in FIG. 34. In the
illustrated embodiment, the range control field 1424
includes at least three fields: a BigExtent flag 1470, a start
offset flag 1472, and a definite length flag 1474. The definite
length flag 1474 indicates whether the transfer has a definite
length. The definite length flag 1474 indicates whether the
length field 1432 is present in the Sendlnit message 1420,
and the BigExtent flag 1470 indicates a size for the length
field 1432. For example, in some embodiments, a value of
1 in the BigExtent flag 1470 indicates that the length field
1432 is eight bytes. Otherwise, the length field 1432 is four
bytes, when present. If the transfer has a definite length, the
start offset flag 1472 indicates whether a start offset is
present. If a start offset is present, the BigExtent flag 1470
indicates a length for the start offset field 1430. For example,
in some embodiments, a value of 1 in the BigExtent flag
1470 indicates that the start offset field 1430 is eight bytes.
Otherwise, the start offset field 1430 is four bytes, when
present.

Returning to FIG. 32, the file designator length field 1426
includes two bytes that indicate a length of the file desig-
nator field 1434. The file designator field 1434 which is a
variable length field dependent upon the file designator
length field 1426. The max block size field 1428 proposes a
maximum size of block that may be transferred in a single
transfer.

The start offset field 1430, when present, has a length
indicated by the BigExtent flag 1470. The value of the start
offset field 1430 indicates a location within the file to be
transferred from which the sender 1402 may start the
transfer, essentially allowing large file transfers to be seg-
mented into multiple bulk transfer sessions.

The length field 1432, when present, indicates a length of
the file to be transferred if the definite length field 1474
indicates that the file has a definite length. In some embodi-
ments, if the receiver 1402 receives a final block before the
length is achieved, the receiver may consider the transfer
failed and report an error as discussed below.

10

15

20

25

30

35

40

45

50

55

60

65

38

The file designator field 1434 is a variable length identi-
fier chosen by the sender 1402 to identify the file to be sent.
In some embodiments, the sender 1402 and the receiver
1406 may negotiate the identifier for the file prior to trans-
mittal. In other embodiments, the receiver 1406 may use
metadata along with the file designator field 1434 to deter-
mine whether to accept the transfer and how to handle the
data. The length of the file designator field 1434 may be
determined from the file designator length field 1426. In
some embodiments, the Sendlnit message 1420 may also
include a metadata field 1480 of a variable length encoded
in a TLV format. The metadata field 1480 enables the
initiator to send additional information, such as application-
specific information about the file to be transterred. In some
embodiments, the metadata field 1480 may be used to avoid
negotiating the file designator field 1434 prior to the bulk
data transfer.

ii. SendAccept

A send accept message is transmitted from the responder
to indicate the transfer mode chosen for the transfer. An
embodiment of a SendAccept message 1500 is presented in
FIG. 35. The SendAccept message 1500 includes a transfer
control field 1502 similar to the transfer control field 1422
of the SendInit message 1420. However, in some embodi-
ments, only the RDrive flag 1452 or the SDrive 1454 may
have a nonzero value in the transfer control field 1502 to
identify the sender 1402 or the receiver 1406 as the driver of
a synchronous mode transfer. The SendAccept message
1500 also includes a max block size field 1504 that indicates
a maximum block size for the transfer. The block size field
1504 may be equal to the value of the max block field 1428
of'the SendInit message 1420, but the value of the max block
size field 1504 may be smaller than the value proposed in the
max block field 1428. Finally, the SendAccept message
1500 may include a metadata field 1506 that indicates
information that the receiver 1506 may pass to the sender
1402 about the transfer.

iii. SendReject

When the receiver 1206 rejects a transfer after a SendInit
message, the receiver 1206 may send a SendReject message
that indicates that one or more issues exist regarding the bulk
data transfer between the sender 1202 and the receiver 1206.
The send reject message may be formatted according to the
status reporting format described above and illustrated in
FIG. 36. A send reject frame 1520 may include a status code
field 1522 that includes two bytes that indicate a reason for
rejecting the transfer. The status code field 1522 may be
decoded using values similar to those enumerated as indi-
cated in the Table 19 below.

TABLE 19

Example status codes for send reject message

Status Code Description

0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0011 Length required

0x0012 Length too large

0x002F Unknown error

In some embodiments, the send reject message 1520 may
include a next status field 1524. The next status field 1524,
when present, may be formatted and encoded as discussed
above in regard to the next status field 1188 of a status report
frame. In certain embodiments, the send reject message

US 9,432,464 B2

39

1520 may include an additional information field 1526. The
additional information field 1526, when present, may store
information about an additional status and may be encoded
using the TLV format discussed above.

iv. Receivelnit

A Receivelnit message may be transmitted by the receiver
1206 as the initiator. The Receivelnit message may be
formatted and encoded similar to the SendInit message 1480
illustrated in FIG. 32, but the BigExtent field 1470 may be
referred to as a maximum length field that specifies the
maximum file size that the receiver 1206 can handle.

v. ReceiveAccept

When the sender 1202 receives a Receivelnit message, the
sender 1202 may respond with a ReceiveAccept message.
The ReceiveAccept message may be formatted and encoded
as the ReceiveAccept message 1540 illustrated in FIG. 37.
The ReceiveAccept message 1540 may include four fields:
a transfer control field 1542, a range control field 1544, a
max block size field 1546, and sometimes a length field
1548. The ReceiveAccept message 1540 may be formatted
similar to the Send Accept message 1502 of FIG. 35 with the
second byte indicating the range control field 1544. Further-
more, the range control field 1544 may be formatted and
encoded using the same methods discussed above regarding
the range control field 1424 of FIG. 34.

vi. ReceiveReject

If the sender 1202 encounters an issue with transferring
the file to the receiver 1206, the sender 1202 may send a
ReceiveReject message formatted and encoded similar to a
SendReject message 48 using the status reporting format,
both discussed above. However, the status code field 1522
may be encoded/decoded using values similar to those
enumerated as indicated in the Table 20 below.

TABLE 20

Example status codes for receive reject message

Status Code Description

0x0020 Transfer method not supported
0x0021 File designator unknown
0x0022 Start offset not supported
0x0013 Length too short

0x002F Unknown error

vii. BlockQuery

A BlockQuery message may be sent by a driving receiver
1202 in a synchronous mode bulk data transfer to request the
next block of data. A BlockQuery impliedly acknowledges
receipt of a previous block of data if not explicit Acknowl-
edgement has been sent. In embodiments using asynchro-
nous transfers, a BlockQuery message may be omitted from
the transmission process.

viii. Block

Blocks of data transmitted in a bulk data transfer may
include any length greater than 0 and less than a max block
size agreed upon by the sender 1202 and the receiver 1206.

ix. BlockEOF

A final block in a data transfer may be presented as a
Block end of file (BlockEOF). The BlockEOF may have a
length between 0 and the max block size. If the receiver
1206 finds a discrepancy between a pre-negotiated file size
(e.g., length field 1432) and the amount of data actually
transferred, the receiver 1206 may send an Error message
indicating the failure, as discussed below.

10

15

20

25

30

35

40

45

50

55

60

65

40

x. Ack

Ifthe sender 1202 is driving a synchronous mode transfer,
the sender 1202 may wait until receiving an acknowledg-
ment (Ack) after sending a Block before sending the next
Block. If the receiver is driving a synchronous mode trans-
fer, the receiver 1206 may send either an explicit Ack or a
BlockQuery to acknowledge receipt of the previous block.
Furthermore, in asynchronous mode bulk transfers, the Ack
message may be omitted from the transmission process
altogether.

xi. AckEOF

An acknowledgement of an end of file (AckEOF) may be
sent in bulk transfers sent in synchronous mode or asyn-
chronous mode. Using the AckEOF the receiver 1206 indi-
cates that all data in the transfer has been received and
signals the end of the bulk data transfer session.

xii. Error

In the occurrence of certain issues in the communication,
the sender 1202 or the receiver 1206 may send an error
message to prematurely end the bulk data transfer session.
Error messages may be formatted and encoded according to
the status reporting format discussed above. For example, an
error message may be formatted similar to the SendReject
frame 1520 of FIG. 36. However, the status codes may be
encoded/decoded with values including and/or similar to
those enumerated in Table 21 below.

TABLE 21

Example status codes for an error message
in a bulk data transfer profile

Status code Description

0x001F
0x0011

Transfer failed unknown error
Overflow error

D. Time Variant Data Profile

Time-variant data profile may be used for reporting and
exchanging time-variant historical data among endpoints
within a smart network. In some embodiments, at least a
portion of the role of any device in the smart network is to
observe and record the environment of which the device is
a part. This observation and reporting is done over time and
reporting those time-variant historical observations to other
endpoints in the smart network. The time-variant data profile
defines a set of tags and data values for exchanging these
time-variant historical observations atop the bulk data trans-
fer protocol. In some embodiments, this profile has an
identified profile identifier that indicates that a communica-
tion includes data in the time-variant data profile

While it is possible to exchange time-variant data using
the bulk data transfer protocol as opaque, binary data, it may
be desirable to exchange such data in a way to enable a
pipeline of backend consumers and applications for the data.
Consequently, tagging or marking up the data in a well-
known format provides scale in both the number of data
producers as well as consumers without invasive or disrup-
tive redefinition of the encoders and decoders used for the
data.

Time-variant data in this profile is tagged using the
tag-length-value (TLV) Format. As previously discussed, the
structure defined and imposed by the TLV amounts to a
small read-only section at the “front” of a time-variant
exchange that describe the data streams at the “back.” In
some embodiments, the format may be trivially transformed
to other representations such as JSON or XML for backend
consumption and processing. Moreover, the data may be

US 9,432,464 B2

41

represented in a known byte order (e.g., big endian or little
endian) to provide for ease of conversion and interpretation.

a. Stream Structures

A time-variant data exchange 1632 is organized as nested
set of structures, as illustrated in FIG. 38. At the outermost
nesting level is the overall streams structure 1634 that marks
the overall time-variant data exchange 1632. Contained
within the streams structure 1634 is a single version element
1636, a description field 1638, a resources element 1640,
descriptors arrays 1642, and records arrays 1644. The ver-
sion element 1636 is a value (e.g., 8-bit unsigned fixed-point
integer) that indicates the version of the structure described
within the streams container 1634. For example, in some
embodiments, the version may be a 1 for the first version.

The description field 1638 includes a human readable
string that describes the entire time variant stream. In some
embodiments, the description field 1638 may be formatted
as a UTF-8 string. In some embodiments, the description
field 1638 may be advisory and/or informative for later
analysis. Moreover, in some embodiments, the description
field 1638 may be omitted from at least some broadcasted
messages.

The resources element 1640 inside the streams structure
1634 is an optional element that contains an array of one or
more URI elements 1646 that map to resources to be fetched
while parsing the streams structure 1634. In some embodi-
ments, URI elements 1646 are strings. In some embodi-
ments, the URIs 1646 may also include an identification of
a path that identifies the time-variant data element into
which the data is to be imported. When importing array data
from multiple locations into the same destination array, the
multiple source arrays may be concatenated together in the
order the resource elements 1640.

In some embodiments, URI elements 1648 shared
between vendors/public descriptors may also be URLs. In
such scenarios, the service that would return the resources
requested by providing these URLs may set an appropriate
MIME type that is an indicator of the encoding of the
resource fetched. For example, if the resource is encoded as
a TLV element, the appropriate MIME type may be “appli-
cation/vnd.nest.weave.tvd+tlv”. Table 22 provides examples
of possible MIME types

TABLE 22

Example MIME types

Resource Encoding MIME Type

TLV application/vnd.<vendor>weave.tvd+tlv
JSON application/vnd.<vendor>weave.tvd+json
XML application/vnd.<vendor>weave.tvd+xml

Each of these external resources that are imported may be
decoded into an array of descriptor elements 1642.
Resources element 1640 can have multiple descriptors ele-
ments which could point to resources that have intersecting
descriptor elements 1654.

The imported resources, decode into the descriptors ele-
ments equivalent to the descriptor elements 1654 in the
descriptors array 1642 inside the parent streams element
1634. The descriptors element 1642 includes one or more
descriptor structures 1654 that includes metadata describing
the data contained within the following records structure
element 1644. The records structure element 1644 includes
one or more record structures 1656, which represents the
historical time-variant data samples being exchanged. More-
over, each descriptor structure 1654 is correlated to a cor-

40

45

42

responding record structure 1656 through a key/value pairs
shared within respective structures through respective iden-
tifier fields 1658.

Resources element 1654 inside the streams element 1634
can contain multiple URIs that import different sets of
descriptors. Also, a streams element 1634 can contain inline
descriptors arrays 1642 that have intersecting/non-interact-
ing descriptors. In some embodiments, the URI may include
a vendor identifier and a product identifier. For example, the
URI might include http:/tlvsite.com/0x235A/0x0005/
85a14e9.1lv. Furthermore, certain constraints may be placed
on the URIs. For example, in some embodiments, URIs may
contain domain information as an identifier of vendor and
domain information should be in lower cased. (e.g http://
www.tlvsite.com/tvd/ or http://tvd.tlvsite.com/). Moreover,
in certain embodiments, the URIs may contain the product
name, product version, and/or a schema version or a unique
identifier for the resource like a SHA1# of the resource (e.g.,
http://tlvsite.com/tvd/hazard_detector/t1/#85a14e9 or http://
hazard_detector.tvd.tlvsite.com/#85a14¢e9). In some
embodiments, the URIs may constrain use of delimiter
characters, such as “/”, in the identifier of the resource. In
some embodiments, the URIs may have an extension to
specify encoding of the resource (e.g http://hazard_detec-
tor.tvd.tlvsite.com/85a14e9.t1lv). In some embodiments,
public URLs may include vendorld and productld for
namespacing (eg http://tvd.tlvsite.com/235A/5/
85a14e9.1lv).

Some resources that are imported may be decoded into an
External Descriptors element that may be parsed indepen-
dently from and interpreted outside the Streams object 1632.
FIG. 39 illustrates a possible structure for an External
Descriptor 1648, in accordance with an embodiment. As
illustrated, the External Descriptor structure 1648 includes
an array of one or more Descriptor elements 1650. These
Descriptor elements 1650 may be similar in structure to the
Descriptors 1642, but the External Descriptors array 1648
may be encoded with a Top Level Profile Tag (e.g., ExtDe-
scriptor tag) with each Descriptor 1650 therein having a
context tag to maintain context specific interpretation of the
Descriptor elements 1642. In certain embodiments, the
External Descriptors 1650 may be formatted in any suitable
format. However, in some embodiments, a TLV encoding
may be used to maintain consistency between imported
elements and inline elements already present. In some
embodiments, when external resources are requested by
their URIs the service that returns these external descriptors.
The Table 23 below provides example tags used by this
profile to format data. Each tag is subsequently described in
detail.

TABLE 23

Example tags for the time-variant profile

Name Tag Type Element Type Value

Resources Context Array 0x23

URI Context String 0x24

ExtDescriptors Fully Array 0x02
Qualified

US 9,432,464 B2
44
TABLE 25-continued

43

The following Table 24 provides example external
descriptor values:

Example imported descriptors.

TABLE 24 5 Element Notes Tag Length Value
Example external descriptor values End of End of Resources 0x18 _ _
Container
Element Notes Tag Length Value Records Start of Records 0x36 1D — —
- Stream Start of Stream 0x35 1E — —
Descriptors (parent) Start Qf 0xD5 23 5 — — Identifier 1 0x25 05 0x00 01
Descriptors 400 0400 10 Time Period 10 0x24 0B 0x01 0%0A
, , 02 Time Base 11 0x22 IF 0x04 0x00 00 00
Descriptor Start of Descriptor 0x15 — — 0B
Identifier = 1 0x25 05 Ox02 0x00 01 Data 21.7°C,222°C, Ox311E O0x0B40 0x00 D9 00
Stream Periodicity — True 0x29 0A — — . .233°C. DE ... 00 E9
Type Temperature 0x25 06 0x02 0x00 05 End of Fnd of Stream 0x18 . .
Fields Start of Fields 0x36 0C — — Container
Field Start of Field 0x15 - - 15 End of End of Records 0x18 — —
Valid True 0x29 OE — — Container
Relative False 0x28 OF - - End of End of Streams 0x18 — —
Signed True 0x29 10 — — Container
Size 15-bits 0x24 11 0x01 0x10
Count 1 0x24 13 0x01 0x01
Exponent -1 0x20 18 0x01 OxFF 20 . .
Unri,ts Start of Units 0x35 14 — _ _ The following Table 26 provides example values for
System ST 0x24 15 0x01 0x01 inline descriptors.
Description “cr 0x2C 09 0x03 0xC2 BO 43
Units Start of Units 0x36 14 — —
Unit Start of Unit 0x35 16 — — TABLE 26
Quantity Temperature 0x24 17 0x01 0x05 25 E le inline d X
End of Container End of Unit 0x18 — — xample nline descriptors.
End of Container End of Units 0x18 — — | h |
End of Container End of Units 0x18 — — Element Notes Tag Leng Value
Elnd of Container End of Fu.:ld 0x18 — — Streams Start of Streams 0xD5 23 5 o o
Field Start of Field 0x15 — — A 00 04 00
Valid False 0x28 OF — — 30 01
Size 1-bit 0x24 12 0x01 0x01 Version 1 0x24 02 0x01 0x01
Count 1 0x24 13 0x01 0x01 . .
. . Descriptors Start of Descriptors 0x36 03 — —
End of Container End of Field 0x18 — — . .
. . Descriptor Start of Descriptor 0x15 — —
End of Container End of Fields 0x18 — — -
i Identifier 1 0x25 05 0x02 0x00 01
Description “Temperature™ 0x2C 09 0x0B 0x54 65 6D
Stream True 0x29 0A — —
70 65 72 61 Periodici
7475 72 65 35 Fenodieny
. . Type Temperature 0x25 06 0x02 0x00 05
Time Base Start of Time Base 0x35 1F — — . .
. Fields Start of Fields 0x36 0C — —
Reference Monotonic 0x24 21 0x01 0x00 . .
Field Start of Field 0x15 — —
Exponent 0 0x20 18 0x01 0x00 Valid True 0x29 OF o o
Synchronization Unsynchronized 0x24 22 0x01 0x02 .
. . Relative False 0x28 OF — —
End of Container End of Timer Base 0x18 — — .
Time Period Start of Ti 0x35 0B 40 Siened True x2910 - — -
1me tero Perio:i) 1me * - - Size 15-bits 0x2411 0x01 0x10
Count 1 0x24 13 0x01 0x01
Exponent 0 02018 0x01 0x00 om * x x
End of Contai End of Ti 0x18 Exponent -1 0x20 18 0x01 OxFF
fid of Lontamer Pgﬂo‘; 1me * - - Units Start of Units 0x35 14 — —
. . System ST 0x24 15 0x01 0x01
End of Conta%ner End of Descriptor 0x18 — — Description “° C.” 0x2C 09 0x03 0xC2 BO 43
End of Container End of 0x18 — — 45 Units Start of Units 0x36 14 o o
ExtDescriptors Unit Start of Unit 0x35 16 — —
Quantity Temperature 0x24 17 0x01 0x05
End of End of Unit 0x18 — —
The following Table 25 provides example values for Cogtaifﬂer dof
. . End o End of Units 0x18 — —
imported descriptors. 50 Container
End of End of Units 0x18 — —
TABLE 25 Container
End of End of Field 0x18 — —
Example imported descriptors. Container
Field Start of Field 0x15 — —
Element Notes Tag Length Value 55 Valid False 0x28 OF — —
Size 1-bit 0x24 12 0x01 0x01
Streams Start of Streams 0xD5 23 5 — Count 1 0x24 13 0x01 0x01
A 00 04 00 End of End of Field 0x18 — —
01 Container
Version 1 0x24 02 0x01 0x01 End of End of Fields 0x18 — —
Resources Start of Descriptors 0x36 23 — 60 Container
URI String 0x24 0x22 0x68 74 74. .. Description “Temperature” 0x2C 09 0x0B 0x54 65 6D 70
(http://tlvsite.com/ 32 34 0a 657261 74
tvd/235A/5/ 75 72 65
a33d424) Time Base Start of Time Base 0x35 1F — —
URI String 0x24 0x22 0x68 74 74. .. Reference Monotonic 0x24 21 0x01 0x00
://tlvsite.co: a Xponent X X X
http:/tlvsi m/ 33320 Exp 0 0x20 18 0x01 0x00
tvd/235A/5/ 65 Synchron- Unsynchronized 0x24 22 0x01 0x02
3d42434)) ization

US 9,432,464 B2

45
TABLE 26-continued

46
TABLE 27-continued

Example inline descriptors.

Example imported plus inline descriptors.

Element Notes Tag Length Value 5 Element Notes Tag Length Value
End of End of Timer Base 0x18 _ _ Quantity Temperature 0x24 17 0x01 0x05
Container End of End of Unit 0x18 — —
Time Period Start of Time 0x35 0B — — Container . .
Period End of Container End of Units 0x18 — —
End of Container End of Units 0x18 — —
Exgon; nt % d of Time Period 0)(()201 81 8 0x01 0%00 10 End of Container End of Field 0x18 — —
na o id ol Lme Fero * - - Field Start of Field 0x15 — —
Container , Valid False 0x28 OF — —
End O.f End of Descriptor 0x18 — — Size 1-bit 0x24 12 0x01 0x01
Container . Count 1 0x24 13 0x01 0x01
End of End of Descriptors 0x18 — — End of Container End of Field 0x18 — —
Container 15 End of Container End of Fields 0x18 — —
Records Start of Records 0x36 1D — — Description “Temperature” 0x2C 09 0xOB 0x54 65 6D 70
Stream Start of Stream 0x35 1E — — 6572 61 74
Identifier 1 0x25 05 0x00 01 7572 65
Time Period 10 0x24 0B 0x01 0x0A Time Base Start of Time 0x35 1F — —
Time Base 11 0x22 1F 0x04 0x00 00 00 Base
0B 2 Reference Monotonic 0x24 21 0x01 0x00
Data 21.7°C,222°C, Ox311E OxOB40 0x00 D9 00 Exponent =0 , 0x20 18— 0x01 0x00
23.3° C DE 00 E9 Synchronization ~ Unsynchronized 0x24 22 0x01 0x02
End of End of. Streé;ln 0x18 o ’ 7 End of Container End of Timer 0x18 — —
. Base
Container . . .
T P d Start of T} 0x35 0B — —
End of End of Records 0x18 — — 1me Feno Periog 1me *
Container 25 Exponent 0 0x20 18 0x01 0x00
End of End of Streams 0x18 — — End of Container End of Time 0x18 — —
Contain.er Period
Total Size — 86 20 5,797 End of Container End of 0x18 — —
Descriptor
End of Container End of 0x18 — —
Table 27 below provides example values for imported 30 Descriptors
I inli d int Records Start of Records 0x36 1D — —
plus nline descriptors. Stream Start of Stream 0x351E — —
Identifier 1 0x25 05 — 0x00 01
TABLE 27 Time Period 10 0x24 0B 0x01 0x0A
Time Base 11 0x22 1F 0x04 0x00 00 00
Example imported plus inline descriptors. 35 0B
Data 21.7 °C3, 22.2 0x31 1E 0x0B 40 0x00 D9 00
Element Notes Tag Length Value) °C., .. 23.3°C DE...00E9
End of Container End of Stream 0x18 — —
Streams Start of Streams 0xD5 23 5 — — End of Container End of Records 0x18 — —
A 00 04 00 End of Container End of Streams 0x18 — —
o1 40
Version 1 0x24 02 0x01 0x01 . .
Resources Start of 0x36 23 — — 1. Descriptor Structure
URI];e?crlptors oxoa k22 Ox68 74 T4 The descriptor structure 1654 is a collection of data
(ht;;%/tlvsite * * X32 34 0a describing the data contained within the associated record
com/tvd/235A/ structure 1656 and may be generally formatted as depicted
5/a33d424) 4 pelow in FIG. 43. As previously discussed, the device
URI (Sl?t;g%/tlvsite 0x24 - Ox22 0X6383 7342752 " descriptor 1654 includes the identifier element 1658. The
com/vd/235A/ identifier element is a caller-assigned 16-bit unsigned fixed-
. 5/3d42434)) point value that is used to uniquely identify a particular
g;:c?il; g)‘;stamer]Safﬁtoszesomces 023"61 %3 — — 5, sequence within the time-variant data exchange and to
Descriptors correlate a descriptor with its associated data in the stream.
Descriptor Start of 0x15 — — The descriptor structure 1654 also includes a stream
Ldentifi ?esmptor 0x35 05 0x02 0x00 01 periodicity element 1660 is a Boolean flag that is used to
cntiner X X X . . .
Stream True 0x29 OA o . indicate whether the descriptor structure 1654 and the asso-
Periodicity 55 ciated data stream are periodic or aperiodic. When stream
gyﬁz gteafipel{ag}rfd 8"322 8(6: 0x02 0x00 05 periodicity element 1660 is false, the stream is aperiodic and
1eldas &) 1elds X — — .
Field Start of Field 0x15 _ _ the data stream may be represented in tuples. The first
Valid True 0x29 0OE — — element of each tuple, when specified, represents a relative
Relative False 0x28 OF — - or absolute time when the data sample(s) were taken. When
Signed True 0x29 10 — — iodici 1 1660 i h . .
Size 15-bits 0x24 11 0x01 0x10 60 stream periodicity element 1s true, the stream 1s peri-
Count 1 0x24 13 0x01 0x01 odic and the data stream is interpreted as values sampled at
Exponent -1 0x20 18 0x01 OxFF precise and evenly spaced intervals in time. The sampling
Units Start of Units 0x3514 — — period will be described by a period element within the
System SI 0x24 15 0x01 0x01 d . di d bel
Description w2 0x2C 09 0x03 0xC2 BO 43 escriptor structure, discussed below. .
Units Start of Units 0x36 14 _ _ 65 The descriptor structure 1654 further includes a type
Unit Start of Unit 0x35 16 — — element 1662. The type element 1662 is a caller-assigned

16-bit or 32-bit unsigned fixed-point value that represents

US 9,432,464 B2

47

the type of sample in a particular data stream. The type
element 1662 applies to any and all field elements 1664
found in the descriptor structure 1654 unless explicitly
overridden by another type element 1662 contained within a
field element 1664.

In some embodiments, values in the range 0-65 and 535
are reserved and selected for use from those listed below in
Table 28.

TABLE 28

Types defined for data streams.

Value(s) Description
0x0000 None
0x0001 Length
0x0002 Mass
0x0003 Time
0x0004 Current
0x0005 Temperature
0x0006 Luminous Intensity
0x0007 Area
0x0008 Volume
0x0009 Velocity
0x000A Acceleration
0x000B Density
0x000C Current Density
0x000D Magnetic Field Strength
0x000E Luminance
0x000F Mass Concentration
0x0010 Molar Concentration
0x0011 Number Concentration
0x0012 Volume Concentration
0x0013 Normality
0x0014 Molality
0x0015 Mole Fraction
0x0016 Mole Ratio
0x0017 Mass Fraction
0x0018 Mass Ratio
0x0019 Plane Angle
0x001A Solid Angle
0x001B Frequency
0x001C Force
0x001D Pressure
0x001E Energy
0x001F Power
0x0020 Electric Charge
0x0021 Electric Potential
0x0022 Capacitance
0x0023 Electric Resistance
0x0024 Electric Conductance
0x0025 Magnetic Flux
0x0026 Magnetic Flux Density
0x0028 Inductance
0x0029 Luminous Flux
0x002A Illuminance
0x002B Radioactivity
0x002C Depth
0x002D Height
0x002E Humidity
0x002F Distance
0x0030 Opacity
0x0031 Attenuation
OXFFFE- Reserved for future use.
0x0031
OXFFFF Other

OXFFFE FFFF- Reserved for vendor use.
0x0001

0000

OXFFFF FFFF-
OXFFFF 0000

Reserved.

In some embodiments, vendors may create their own values
for this element in the 32-bit range by qualifying the name
space with a vendor identifier in the upper 16-bits and using
any value in the lower 16-bits.

The descriptor structure 1654 may also include a descrip-
tion element 1666. The description clement 1666 is a

10

15

20

25

30

35

40

45

50

55

60

65

48

caller-assigned, human-readable UTF-8 string that may be
used to describe a particular stream. The description element
1666 may apply to any and all field elements 1664 found in
the descriptor structure 1654 unless explicitly overridden by
another description element contained within a field element
1664. In some embodiments, the description element 1666
may be omitted from some instances of the descriptor
structure 1654.

As discussed above, the descriptor structure 1654 may
also include a derivation element 1668, a time base element
1670, and a time period element 1672. The derivation
element 1668 is a structure used to indicate that a math-
ematical operation was applied to the data stream to arrive
at the exchanged data. FIG. 41 illustrates an embodiment of
the derivation element 1668. The derivation element 1668
applies to any field elements 1664 found in the descriptor
structure 1654 unless explicitly overridden by another deri-
vation element 1668 contained within a field element 1664.
The derivation element 1668 includes an operations element
1674 is a array that contains one or more operation sub-
elements 1676 describing mathematical operations or trans-
formations that have been applied to the data samples in the
corresponding stream structure. The operation sub-element
1676 is a caller-assigned 16-bit or 32-bit unsigned fixed-
point value that represents a mathematical operation that
was applied to achieve the sample derivation. For example,
the operations may be indexed similarly to the values
reproduced below in Table 29.

TABLE 29

Operations defined for data streams.

Value(s) Description
0x0000 None

0x0001 Minimum

0x0002 Maximum

0x0003 Mean

0x0004 Mode

0x0005 Median

0x0006 Logarithm-Base 2
0x0007 Logarithm-Base e
0x0008 Logarithm-Base 10
0x0009 Quadratic Mean
OxFFFE- Reserved for future
0x000A use.

OxFFFF Other

Reserved for vendor
use.
Reserved.

OxXFFFE FFFF-
0x0001 0000
OxFFFF FFFF-
OxFFFF 0000

In some embodiments, vendors may create their own values
for this element in the 32-bit range by qualifying the name
space with a vendor identifier in the upper 16-bits and using
any value in the lower 16-bits.

The derivation element 1668 also includes an identifier
element 1678. The identifier element 1658 is a caller-
assigned 16-bit unsigned fixed-point value that is to corre-
late the derivation back to another base descriptor structure
1654/stream. In some embodiments, the identifier element
1678 may be omitted from the derivation element 1668 and
instead use the identifier element 1658 of the descriptor
structure 1654 of the derivation element 1668.

Returning to FIG. 40, the fields element 1664 is an array
that contains or one or more field structures 1680 describing
the format of the data samples found in a corresponding
stream structure. The field structure 1680 is a structured
collection of metadata describing a stride of the data in an
associated stream element and may be structured as illus-

US 9,432,464 B2

49

trated in FIG. 42. Several of the fields describe how to
compute both the resolution of the sample data as well as a
linear transformation on each data sample to arrive at a
physical value from a logical value. As discussed below, the
fields used for these computations may include an exponent
field, a minimum field, a logical maximum field, a physical
minimum, and a physical maximum, among other fields. The
resolution may be derived as shown in Equation 1 below:

Resolution = (Equation 1)

Logical Maximum— Logical Minimum

x 10Exp0nem
Physical Maximum— Physical Minimum ’

The linear transformation may be applied as shown in
Equation 2 below:

((Logical, — Logical Minimumy x
Phvsical = [(Physical Maximum— Physical Minimum)
ysieal = (Logical Maximum — Logical Minimumy)

] (Equation 2)

Physical Minimum] x 10Exponent

The field structure 1680 may include a valid element
1682. The valid element 1682 is a Boolean flag used to
indicate whether or not the field contains alignment padding
or valid data. When the valid element 1682 is false, the field
contains padding and may be ignored, regardless of value.
When valid element 1682 is true, the field contains a valid
data sample.

The field structure 1680 may include may also include a
relative element 1684. The relative element 1684 is a
conditional Boolean value that may be omitted when the
valid element 1682 is false. When present, the relative
element 1684 may be used to indicate whether or not the
field contains absolute or relative measurements.

When relative element 1684 is false, the field structure
1680 contains data that is absolute and may be interpreted
without consideration of any prior samples. When the rela-
tive element 1684 is true, the field structure 1680 contains
data that is relative to be interpreted in the context of the
samples that preceded it.

The field structure 1680 may also include a signed ele-
ment 1686. The signed element 1686 is a conditional Bool-
ean flag that may be omitted when the valid element 1682 is
false. When present, the signed element 1686 may be used
to indicate whether or not the field contains unsigned or
signed data. When the signed element 1686 is false, the field
contains unsigned data. When the signed element 1686 is
true, the field contains signed data. In some embodiments,
the signed data may be two’s complement data.

The field structure 1680 may include a size element 1688
and a count element 1690. The size element is an 8-bit
unsigned fixed-point value that indicates the size of a
corresponding data value. In some embodiments, the size
may be represented in bits or bytes. The count element 1690
is a required 8-bit unsigned fixed-point value that indicates
the number of size elements 1688 for the field.

In some embodiments, the count element 1690 may be
one. However, the count element 1690 provides a means by

10

15

20

25

30

35

40

45

50

55

60

65

50

which to represent tuple streams, such as a RGB tuple from
a multi-color luminance sensor. In some embodiments, the
size and count elements 1688 and 1690 may be specified
such that individual fields achieve alignments of precisely 1
byte, 2 bytes, or 4*k bytes, where k is a positive integer.

The field structure 1680 may also include an exponent
element 1692. The exponent element 1692 is an optional
8-bit signed or unsigned fixed-point value that represents the
exponent applicable to the data samples. In some embodi-
ments, the exponent may be represented in base 10. This
element provides a way to scale data to preserve resolution
or to avoid floating-point representation. Equations 1 and 2
above demonstrate how the exponent element 1692 may be
used to transform each data sample. In some embodiments,
an omitted exponent element 1692 implies an exponent of 0
(e.g., 10°=1). For example, to communicate a range of
values 0.0 to 150.0 with significance to the tenths, the values
could be exchanged with the logical range 0 to 1500 with an
exponent element 1692 value of -1 (e.g., 107'=i0).

The field structure 1680 may also include a logical
minimum element 1694. The logical minimum element
1694 is a fixed-point value that indicates the minimum
expected, valid logical value for the field. Equations 1 and
2 above demonstrate how this value is used to transform
each data sample. When the logical minimum element 1694
is absent, the implied value for this field is the minimum
valid representation based on the size and signed field
elements 1686 and 1688. The field structure 1680 may also
include a similar a logical maximum element 1696 as a
fixed-point value that indicates the maximum expected,
valid logical value for the field. When the logical maximum
element 1696 is absent, the implied value is the maximum
valid representation for the field based on the size and signed
field elements 1686 and 1688. When one or both of these
values is present, data samples outside of the range are
invalid and should be ignored.

The field structure 1680 may also include a physical
minimum element 1698 and a physical maximum element
1700. The physical minimum element 1698 is a fixed-point
value that indicates the minimum expected and valid physi-
cal value for the field. When the physical minimum element
1698 is absent, the implied value field is the literal or implied
value of logical minimum element 1694. Equations 1 and 2
above demonstrate how this value is used to transform each
data sample. The physical maximum element 1700 is a
fixed-point value that indicates the maximum expected and
valid physical value for the field. Equations 1 and 2 above
demonstrate how this value is used to transform each data
sample. When the physical maximum element 1700 is
absent, the implied value is the literal or implied value of
logical maximum element 1696.

The field structure 1680 may also include a units element
1702, a description element 1704, a type element 1706, and
a derivation element 1708. The units element 1702 is an
advisory structured collection of metadata describing the
units associated with the physical values represented by data
samples and may be structured as illustrated in FIG. 43.

The units element 1702 includes a system element 1710
that is an 8-bit unsigned fixed-point number that indicates
the system of units in effect for the enclosing units element
1702. In some embodiments, the system element 1710 may
be selected from one of those values specified in Table 30
below.

US 9,432,464 B2

51
TABLE 30

Allowed values for the System
tag in the Units structure.

Value Description
0 None
1 System
International
2 English
3-255 Reserved

The units element 1702 may also include a description
element 1712 is a caller-assigned, human-readable UTF-8
string that may be used to describe the specified units (e.g.
“N” for kg*m/s?). The units element 1702 may also include
an exponent element 1714. In the context of the units
element 1702, the exponent element 1714 is an 8-bit signed
or unsigned fixed-point value that represents the exponent
applied to the overall, composed Units. These correspond to
common unit prefixes used to indicate a decadic multiple or
fraction of the units. For example millimeters would have an
exponent value of -3 and hectometers would have an
exponent value of 2. When the exponent element 1714 is
absent no prefix is applied to the units of measure. The units
element 1702 includes a units sub-element 1716. The units
sub-element 1716, in the context of a parent units element
1702, is an array composed of one or more unit structures
1718, as shown in FIG. 5 above. The unit structure 1718 is
a structure, that when composed with all other unit structures
1718, describes the derived quantity the data stream repre-
sents. Each unit structure 1718 may include a quantity
element as a required 8-bit unsigned fixed-point value that
represents the base unit in the system. In some embodi-
ments, the quantity element 1720 may include a value
selected from the values listed in Table 31 below.

TABLE 31
Example values for the Quantity tag in the Unit structure.
Value Quantity None SI English
0 None — —
1 Length — Meter Inch
2 Mass — Kilogram Slug
3 Time — Second Second
4 Electric Current — Ampere Ampere
5 Temperature — Celsius Fahrenheit
6 Luminous Intensity — Candela Candela
7 Amount — Mole Mole
8 Plane Angle — Radians Degrees
9 Solid Angle — Steradians Square Degrees
10 Reserved —
255 Reserved —

Each unit structure 1718 may also include an exponent
element 1722. The exponent element 1722, in the context of
the unit structure 1718, is an 8-bit signed or unsigned
fixed-point value that represents the exponent applied to the
associated quantity element 1720. In some embodiments, an
omitted exponent element 1722 implies an exponent of 0
(e.g., 10°=1). For example 1/m> would have an exponent
value of -2.

Returning to FIG. 42, when the description element 1704
overrides any previously encountered in the parent descrip-
tor structure 1654. When the type element 1706 is present,
the type element 1706 overrides any previously encountered
in the parent descriptor structure 1654. Similarly, in FIG. 41,

10

40

45

50

55

60

65

52

when the operation element 1676 is present it overrides any
previously encountered in the parent descriptor structure
1692.

The time period element 1672 of FIG. 43 is predicated on
the assertion of the stream periodicity element 1660 and
contains a single exponent element 1724, as illustrated in
FIG. 44. The actual period value itself is contained within
the stream element 1656, described in detail below. The
exponent element 1724 within the time period element 1672
is an 8-bit signed or unsigned fixed-point value indicating
the base 10 exponent of the time period. For example, an
exponent element 1724 value of -3 (10~>) may indicate that
the time period is specified in milliseconds.

The time base element 1670 of FIG. 40 within a descriptor
structure 1654 includes a reference element 1726, an expo-
nent element 1728, and a synchronization element 1730. The
reference element 1726 within the time base element 1670
is an 8-bit unsigned fixed-point value indicating the refer-
ence of the time base. In some embodiments, the time base
element 1670 may be one of the non-reserved values speci-
fied in Table 32 below.

TABLE 32

Allowed values for the Time Base Reference element.

Value Mnemonic Description
0 Monotonic The monotonically increasing time from some
implementation-dependent epoch.
1 Real Time The current real-time time of day clock.
2-255 — Reserved for future use.

For the monotonic reference, the epoch is system- and
implementation-defined. The definition might, for example,
be from a system power-on or boot-up time. For the real time
reference, the Epoch is the POSIX or Unix Epoch of
1970-01-01T00:00:00Z, not counting leap seconds.

The exponent element 1728 within the time base element
1670 is an 8-bit signed or unsigned fixed-point value indi-
cating the base 10 exponent of the time reference offset. For
example, an Exponent value of -3 (10~3) may indicate that
the time base is specified in milliseconds from the Reference
epoch. In some embodiments, an omitted Exponent element
implies an exponent of 0 (10°).

The synchronization element 1730 within the time base
element 1670 is an 8-bit unsigned fixed-point value indicat-
ing the synchronization state of the time base. In some
embodiments, the synchronization element 1730 may be one
of the non-reserved values specified in Table 33 below.

TABLE 33

Allowed values for the Time Base Synchronization element.

Value Mnemonic Description
0 Unknown The state is indeterminate or
unknown.
1 Synchronized The state is synchronized.
2 Unsynchronized The state is unsynchronized.
3-255 — Reserved for future use.

FIG. 46 illustrates an example of a structure of the stream
element 1656. As previously discussed, each stream element
1656 includes a respective identifier field 1658. Further-
more, each stream element 1656 includes a time base
element 1732, a time period element 1734, and data element
1736. In the context of a stream element 1656, the time base
element 1732 is a signed or unsigned, fixed-point element

US 9,432,464 B2

53

present when the time base element 1670 is also present in
the corresponding descriptor element 1654. The value rep-
resents the offset, in the magnitude specified by the exponent
element 1728 of the time base element 1732, 1671 from the
reference element 1726 value.

Also, in the context of a stream element 1656, the time
period element 1734 is a signed or unsigned, fixed-point
element present when the time period element 1672 is also
present in the corresponding descriptor element 1654. In this
context, the time period element 1734 is the data for the
metadata in the corresponding descriptor 1654. The value
represents the sampling period, in the magnitude specified
by the exponent element 1728 of the time period element
1672 in the descriptor element 1654, applicable to all the
data samples.

The data element 1736 is a byte stream that represents the
actual data samples described by the corresponding descrip-
tor element 1654. The data is interpreted with boundaries
according to the Field Size and Count elements in the
corresponding descriptor as shown in FIGS. 9 and 10 below.

ii. Example Data Arrangements

FIG. 47 depicts a flexible data arrangement with three (3),
valid 5-bit fields and one (1), 1-bit padding field, achieving
two-byte alignment. FIG. 48 depicts a flexible data arrange-
ment with one (1), valid 7-bit field and one (1), 1-bit padding
field, achieving one-byte alignment.

iii. Tags

Table 34 below summarizes a few possible tags used by
this profile to format data. Each tag is subsequently
described in detail.

TABLE 34
TLV tags defined for this profile.
Name Tag Type Element Type Value
Streams Fully- Structure 0x01
Qualified

Version Context U8 0x02
Descriptors Context Array 0x03
Descriptor Context Structure 0x04
Identifier Context Ul6 0x05
Type Context Ul16/U32 0x06
Derivation Context Structure 0x07
Operation Context Ul16/U32 0x08
Description Context UTF-8 String 0x09
Stream Context Boolean 0x0A
Periodicity

Time Period Context Structure/ 0x0B

[SUJ
Fields Context Array 0x0C
Field Context Structure 0x0D
Valid Context Boolean 0x0E
Relative Context Boolean O0x0F
Signed Context Boolean 0x10
Size Context U8 0x11
Count Context ug 0x12
Units Context Structure/ 0x13
Array

System Context ug 0x14
Unit Context Structure 0x15
Quantity Context U8 0x16
Exponent Context [SU]I8 0x17
Logical Context Fixed 0x18
Minimum

Logical Context Fixed 0x19
Maximum

Physical Context Fixed Ox1A
Minimum

Physical Context Fixed 0x1B
Maximum

Records Context Array 0x1C
Stream Context Structure 0x1D

10

15

20

30

35

40

45

50

55

60

65

54
TABLE 34-continued

TLV tags defined for this profile.

Name Tag Type Element Type Value

Data Context Data O0x1E

Time Base Context Structure/ O0x1F
[SUJ

Reference Context U8 0x20

Synchronization Context U8 0x21

Operations Context Array 0x22

In some embodiments, in order to reduce RAM usage in
RAM constrained devices, an effectively read-only descrip-
tor portion of a stream may be composed at compile time
and stored in read-only memory. Consequently, these imple-
mentations may use constants that can be specified and
resolved at compile time and that are further amenable to
macros suitable for packing and arranging the data in byte
arrays.

When the sample rate of observed data changes, various
methods for handling the changes may be employed. For
example, the stream may be re-represented as an aperiodic
stream. With the aperiodic option, the timestamps in the
stream may change at any appropriate frequency with an
added overhead of an absolute or relative timestamp for each
data sample.

Additionally or alternatively, the stream may be submitted
as n+l different periodic streams, for n sampling rate
changes. With this approach, the time period metadata
and/or data will be different for each stream, corresponding
to the sample rate change. These same options may be
employed when there is a gap in the stream. In other words,
the portions of the streams around the gap may be treated as
different periodic streams.

FIG. 49 illustrates a flowchart view of an embodiment of
a process 1800 for using the previously discussed time
variant data profile. A smart device obtains data samples
from one of its sensors (block 1802). For example, the
device may obtain temperature samples from a temperature
sensor. In some embodiments, the data samples may be
minimum or maximum values obtained by the sensor during
a period of time. In other embodiments, the data samples
may have a mathematical operation performed upon them by
the smart device (block 1804). For example, the data
samples may be used in a transformative math operation to
generate a mean, mode, median, or other operation for the
data samples for a period of time within a whole period of
time for the data samples. In some embodiments, the math-
ematical operation may include an identity operation that
passes through values unchanged.

In certain embodiments, the smart device may also import
some information from external resources in a first format.
For example, the smart device may obtain data samples from
memory of a remote device where the remote data samples
are encoded in a specific format (e.g., TLV, JSON, XML,
etc.) In some embodiments, the smart device may convert
the remote data samples into a second format for use in a
stream to be sent to other devices. In other embodiments, the
remote data samples may simply be encoded in the first
format in the stream. In further embodiments, the smart
device may simply encode a location of a resource from
which to import the data samples.

The smart device then encapsulates the data samples in a
time variant data format previously discussed (block 1806).
For example, the data samples may be encoded in a stream
structure within a general message that is tagged as using the

US 9,432,464 B2

55

time variant data profile. Furthermore, the stream structure
may include a resource structure that provides identification
of external resources encoded and/or to be encoded in the
stream structure. The stream structure may also include the
descriptor structure. As previously discussed, the descriptor
structure includes an array of data that has been imported
into the stream and/or the data samples from the sensor.
Within the descriptor is a derivation structure that includes
various metadata about the data therein. For example, as
previously discussed, in some embodiments, encapsulating
the data samples includes populating the derivation structure
with information about a stride of the data samples, units for
the data samples, exponent relating to scale (e.g., millisec-
onds or seconds) of the units, a time period of the data
samples, indications of whether the data samples are mea-
sured in absolute time units or relative time units, and/or
other information about the data samples. After the data
samples have been encapsulated, the smart device may send
to another device. (block 1808). For example, the smart
device may send the encapsulated data samples to other
devices in the network, a device outside the network via a
network gateway, and/or a remote service.

What is claimed is:

1. A non-transitory, computer-readable medium having
stored thereon instructions for exchanging a data stream of
information that varies over time using a message format,
wherein the message format comprises:

a version field that indicates a version of a structure of the

message format;

one or more resources fields that each identifies a resource

to be imported into the data stream exchanging the data
stream;

one or more records that represent time-variant data

samples being exchanged in the message;

one or more descriptor fields, wherein each descriptor

field corresponds to at least one respective record of the
one or more records and contains metadata describing
data contained within the at least one record; and

a description field having a human-readable string for-

matted in Universal Character Set and Transformation
Format (UTF) to describe a time-variant stream from
which the time-variant data samples are derived,
wherein the description field is configured to enable
later analysis of the exchange of the data stream.

2. The non-transitory, computer-readable medium of
claim 1, wherein the UTF comprises Universal Character
Set and Transformation Format-8 bit (UTF-8).

3. The non-transitory, computer-readable medium of
claim 1, wherein each of the one or more resource fields
comprises a string comprising a Uniform Resource Identifier
(URI) that maps to a resource to be imported into the
message, wherein each URI is a string that identifies a
location of the resource to be imported.

4. The non-transitory, computer-readable medium of
claim 3, wherein the URI refers to a resource that is common
between vendors or are public descriptors, and the URI
comprises a Uniform Resource Locator (URL) that sets a
Multi-Purpose Internet Extensions (MIME) type that is an
indicator of encoding of the resource to be fetched for
importing into the data stream.

5. The non-transitory, computer-readable medium of
claim 3, wherein each of the one or more resource fields
comprise a source indication that identifies a specific loca-
tion within the resource from which imported data is to be
derived, wherein the source indication comprises:

10

15

20

25

30

35

40

45

50

55

60

65

56

an explicit indication that explicitly states where the
imported data is specifically located within the
resource; or

an implicit indication when an explicit indication is

lacking, wherein the implicit indication indicates that
the specific location of the imported data is in a root
location of the resource.

6. The non-transitory, computer-readable medium of
claim 3, wherein the instructions are configured to cause a
processor to import multiple resources into a single desti-
nation by concatenating data from the multiple resources
into a destination indicated by the destination field, wherein
an order of the concatenated data corresponds to an order of
the multiple resources in the message.

7. An electronic device comprising:

a processor; and

a memory comprising instructions for causing the pro-

cessor to exchange a data stream of information that

varies over time using a message format, wherein the

message format comprises:

a version field that indicates a version of a structure of
the message format;

one or more resources fields that each identifies a
resource to be imported into the data stream
exchanging the data stream;

one or more records that represent time-variant data
samples being exchanged in the message; and

one or more descriptor fields, wherein each descriptor
field corresponds to at least one respective record of
the one or more records and contains metadata
describing data contained within the at least one
record; and

a description field having a human-readable string
formatted in Universal Character Set and Transfor-
mation Format (UTF) to describe a time-variant
stream from which the time-variant data samples are
derived, wherein the description field is configured
to enable later analysis of the exchange of the data
stream.

8. The electronic device of claim 7, wherein the descriptor
field comprises a 16-bit unsigned fixed-point value identifier
that matches a corresponding identifier in a corresponding
record to indicate that the descriptor field describes data
found in the record is described by the metadata in the
descriptor field.

9. The electronic device of claim 7, wherein the resource
indicated in a location external to the electronic device, the
data in the external resource is formatted in tag-length-value
(TLV) format, a profile tag for the descriptor field may be
context-specific by using a top level profile tag to indicate
the descriptor field refers to an exterior resource by tagging
the descriptor field with a 0x02 value in an ExtDescriptors
tag.

10. The electronic device of claim 7, wherein descriptor
field includes a stream periodicity indicator that indicates
whether data in the stream is periodic or aperiodic using a
flag, wherein when the flag is positive, indicates that the
stream is periodic, and when the flag is negative, indicates
that the stream is aperiodic having irregular intervals of time
between samples in the stream.

11. The electronic device of claim 7, wherein the descrip-
tor field comprises a type element that is a caller-assigned
16-bit or 32-bit unsigned fixed-point value that represents a
type of data present in the stream, wherein the type element
applies to field elements found in the descriptor field unless
explicitly overridden by another type element contained in a
respective field element of the descriptor.

US 9,432,464 B2

57

12. The electronic device of claim 11, wherein the type
comprises length, mass, time, current, temperature, lumi-
nous intensity, area, volume, velocity, acceleration, density,
magnetic field strength, luminance, molar concentration,
number concentration, molality, frequency, force, pressure,
energy, power, electric charge, capacitance, electrical resis-
tance, magnetic flux, electrical resistance, radioactivity,
depth, height, or humidity.

13. The electronic device of claim 11, wherein the type
element comprises:

a first portion of the type element that indicates a vendor
identifier for a vendor of the resource containing data to
be imported; and

a second portion of the type element that indicates a type
of data specific to data points derived from a device
having a specific vendor identifier.

14. A method for conveying time-variant data, compris-

ing:

transmitting, using a network interface, data to exchange
a data stream of information that varies over time using
a message format, wherein the message format com-
prises:

a version field that indicates a version of a structure of
the message format;

one or more resources fields that each identifies a
resource to be imported into the data stream
exchanging the data stream;

one or more records that represent time-variant data
samples being exchanged in the message;

one or more descriptor fields, wherein each descriptor
field corresponds to at least one respective record of
the one or more records and contains metadata
describing data contained within the at least one
record; and

a description field having a human-readable string
formatted in Universal Character Set and Transfor-
mation Format (UTF) to describe a time-variant
stream from which the time-variant data samples are
derived, wherein the description field is configured
to enable later analysis of the exchange of the data
stream.

15. The method of claim 14, wherein the descriptor
element comprises a field element that describes the format
of one or more data samples found in the message, wherein
the field element comprises:

a valid element that is a Boolean flag used to indicate
whether the field contains alignment padding or valid
data;

a relative element that is a conditional Boolean flag that
is used to indicate whether the samples are measured
absolutely or relative to each other;

a signed element that indicates whether the data samples
are signed or unsigned values;

5

10

20

40

45

50

58

one or more size elements that are each an 8-bit unsigned
fixed-point value that indicates a size of corresponding
data sample; and

a count element is an 8-bit unsigned fixed-point value that
indicates a number of size elements for the field ele-
ment.

16. The method of claim 15, wherein the field element

comprises:

an exponent element that is an 8-bit value used to indicate
an exponent of the data to preserve resolution while
scaling the data samples; and

a units element that includes metadata describing units of
measure represented by the data samples;

one or more overriding elements configured to override, for
the field element, metadata referring to the one or more
records, wherein the one or more overriding elements com-
prise a data type or a description for the data samples.

17. The method of claim 15, wherein the units element
comprises:

a system element that is an 8-bit unsigned fixed-point
number that indicates a system of units in effect for the
units element; and

a description element that is a caller-assigned, human-
readable Uniform Character Set and Transform Format
8 bit (UTF-8) string that may be used to describe the
specified units.

18. The method of claim 15, wherein the field element

comprises:

a logical minimum field that indicates a minimum
expected, valid logical value for a corresponding data
sample based on the signed and size elements; and

a logical maximum field that indicates a minimum
expected, valid logical value for a corresponding data
sample based on the signed and size elements.

19. The method of claim 14, wherein the descriptor
element comprises a time base element that indicates time
base information about the stream comprising:

a reference element that is an 8-bit unsigned fixed-point
value indicating whether the clock is real time or
incremental;

an exponent element that is an 8-bit fixed-point value
indicating a base ten exponent of units of time used to
track the data samples;

a synchronization element that is an 8-bit unsigned fixed-
point value indicating whether the time base is syn-
chronized, unsynchronized, or unknown.

20. The method of claim 14, wherein the descriptor
element comprises a time period element that indicates
intervals between data samples of the data stream of when
the data stream is indicated as periodic, wherein the time
period element comprises an exponent element that is an
8-bit fixed-point value indicating a base ten exponent of the
interval in relation to seconds as a base unit.

#* #* #* #* #*

